Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silyl ethers aldol condensation

Aldol condensation of silyl enol ethers 213 with 214 provided in good yields the condensation products 215 which on treatment with concentrated hydrochloric acid in methanol gave derivatives 216 (Scheme 51) (88S381). [Pg.182]

Conjugate reduction.1 This stable copper(I) hydride cluster can effect conjugate hydride addition to a,p-unsaturated carbonyl compounds, with apparent utilization of all six hydride equivalents per cluster. No 1,2-reduction of carbonyl groups or reduction of isolated double bonds is observed. Undesirable side reactions such as aldol condensation can be suppressed by addition of water. Reactions in the presence of chlorotrimethylsilane result in silyl enol ethers. The reduction is stereoselective, resulting in hydride delivery to the less-hindered face of the substrate. [Pg.175]

Fluoride-catalysed aldol condensation of silyl enol ethers... [Pg.261]

Although in the recent years the stereochemical control of aldol condensations has reached a level of efficiency which allows enantioselective syntheses of very complex compounds containing many asymmetric centres, the situation is still far from what one would consider "ideal". In the first place, the requirement of a substituent at the a-position of the enolate in order to achieve good stereoselection is a limitation which, however, can be overcome by using temporary bulky groups (such as alkylthio ethers, for instance). On the other hand, the ( )-enolates, which are necessary for the preparation of 2,3-anti aldols, are not so easily prepared as the (Z)-enolates and furthermore, they do not show selectivities as good as in the case of the (Z)-enolates. Finally, although elements other than boron -such as zirconium [30] and titanium [31]- have been also used succesfully much work remains to be done in the area of catalysis. In this context, the work of Mukaiyama and Kobayashi [32a,b,c] on asymmetric aldol reactions of silyl enol ethers with aldehydes promoted by tributyltin fluoride and a chiral diamine coordinated to tin(II) triflate... [Pg.265]

Lewis acid-catalyzed aldol condensation of aldehyde and silyl enol ether. [Pg.403]

Mukiayama aldol reactions between silyl enol ethers and various carbonyl containing compounds is yet another reaction whose stereochemical outcome can be influenced by the presence of bis(oxazoline)-metal complexes. Evans has carried out a great deal of the work in this area. In 1996, Evans and coworkers reported the copper(II)- and zinc(II)-py-box (la-c) catalyzed aldol condensation between benzyloxyacetaldehyde 146 and the trimethylsilyl enol ether [(l-ferf-butylthio)vinyl]oxy trimethylsilane I47. b82,85 Complete conversion to aldol adduct 148 was achieved with enantiomeric excesses up to 96% [using copper(II) triflate]. The use of zinc as the coordination metal led to consistently lower selectivities and longer reaction times, as shown in Table 9.25 (Eig. 9.46). [Pg.565]

Preparation of a somewhat more complex leukotriene antagonist begins by aldol condensation of the methyl carbanion from quinoline (29-1) with meta-phthalalde-hyde (29-2) to give the stilbene-like derivative (29-3) dimer formation is presumably inhibited by the use of excess aldehyde. Reaction of that product with A,A-dimethyl-3-mercaptopropionamide in the presence of hexa-methylsilazane affords the silyl ether (29-4) of the hemimercaptal. Treatment of that intermediate with ethyl 3-mercaptopropionate leads to the replacement of the silyl ether by sulfur and the formation of the corresponding thioacetal (29-5). Saponification of the ester group leads to the carboxylic acid and thus to verlukast (29-6) [33]. [Pg.447]

Vinyloxyboranes (boron enolates) are obtained in quantitative yield by reaction of silyl enol ethers with dialkylboron triflates in CH2C12 at —22 . The products can be used for stereoselective aldol condensations.3 Example ... [Pg.119]

Stereoselective aldol-type condensation.1 Enol silyl ethers do not undergo aldol condensation with aldehydes or ketones in the presence of this triflate,. but the reaction occurs at —78° (4-12 hours) with the corresponding acetals or ketals (and certain orthoesters). Moreover the erythro-aldol is formed with high stereoselectivity. [Pg.438]

Aldol condensation. The aldol condensation of silyl enol ethers with an aldehyde in the presence of 1 (0.1 5 equivalents) results mainly or even exclusively in erythro-adducts (equations I and II) regardless of the stereochemistry of the cnolatc. [Pg.453]

Enantioselective condensation of aldehydes and enol silyl ethers is promoted by addition of chiral Lewis acids. Through coordination of aldehyde oxygen to the Lewis acids containing an Al, Eu, or Rh atom (286), the prochiral substrates are endowed with high electrophilicity and chiral environments. Although the optical yields in the early works remained poor to moderate, the use of a chiral (acyloxy)borane complex as catalyst allowed the erythro-selective condensation with high enan-tioselectivity (Scheme 119) (287). This aldol-type reaction may proceed via an extended acyclic transition state rather than a six-membered pericyclic structure (288). Not only ketone enolates but ester enolates... [Pg.123]

Mukaiyama aldol condensation (6, 590-591).8 This reaction can be effected in the absence of a Lewis acid catalyst under high pressure (10 kbar). Surprisingly the stereoselectivity is the reverse of that of the TiCl4-catalyzed reaction (equation I). The reaction can also be effected in water with the same stereoselectivity, but the yield is low because of hydrolysis of the silyl enol ether. Yields are improved by use of water-oxolane (1 1) and by sonication.9... [Pg.307]

The Mukaiyama reaction is a versatile crossed-aldol reaction that uses a silyl enol ether of an aldehyde, ketone, or ester as the carbon nucleophile and an aldehyde or ketone activated by a Lewis acid as the carbon electrophile. The product is a /1-hydroxy carbonyl compound typical of an aldol condensation. The advantages to this approach are that it is carried out under acidic conditions and elimination does not usually occur. [Pg.241]

The catalyzed reaction of 1 with a,P-enals takes an unexpected course. The adduct with methacrolein, for example, obtained after silyl ether cleavage does not contain the expected aldehyde group, but has the bicyclic structure 5. Apparently the initial product a undergoes an intramolecular aldol condensation to give b. which undergoes silyl transfertoc, which is hydrolyzed by acid to the 7-hydroxy-bicyclo[2.2.1 Jheptanone 5. [Pg.515]

Carbonyl activation and deactivation.1 Aldehydes, but not ketones, undergo aldol condensation with silyl enol ethers at —78° in the presence of dibutyltin bistriflate. In contrast, the dimethyl acetals of ketones, but not of aldehydes, can undergo this condensation (Mukaiyama reaction) with silyl enol ethers at -78° with almost complete discrimination, which is not observed with the usual Lewis-acid catalysts. Thus dibutyltin bistriflate activates aldehydes, but deactivates acetals of... [Pg.111]

In Equation Si3.7 conversion of cyclohexanone to its silyl enol ether ensures that only acetone acts as the electrophilic partner in a reaction which is equivalent to an aldol condensation of two ketones. [Pg.58]

Enantioselective aldol synthesis. The dioxolones formed from (S)- or (R)-l and aromatic aldehydes undergo a diastereoselective condensation with enol silyl ethers. Optically active aldols are obtained by removal of the chiral auxiliary by oxidative decarboxylation with PbfOAcfj. A typical example using the dioxolone (2) formed from (R)-1 and benzaldehyde is shown in equation (I). However, only moderate diastereoselectivity... [Pg.291]

Aldol condensation (8, 467). Complete details have been published concerning the fluoride-ion-catalyzed aldol reaction of enol silyl ethers with aldehydes. I hc primary product is the silyl ether of the aldol, and yields can be markedly improved by addition of FSi(CHj), to the reaction. The reaction exhibits only slight anti-syn selectivity, but does show high axial selectivity when the substituent is added to the a-position of a cyclohexanone (equation I). [Pg.459]

The aldol condensation of aldehyde and silyl enol ether in the presence of a catalyst such as TiCU is called the Mukaiyama aldol condensation (Scheme 3.7). [Pg.120]

Aldol Condensations. The rhodium complex has been utilized as a catalyst in aldol condensation of silyl enol ethers and... [Pg.80]

Mukaiyama Aldol Condensation. The BINOL-derived titanium complex BINOL-T1CI2 is an efficient catalyst for the Mukaiyama-type aldol reaction. Not only ketone silyl enol ether (eq 25), but also ketene silyl acetals (eq 26) can be used to give the aldol-type products with control of absolute and relative stereochemistry. [Pg.89]

Mukaiyama Aldol Condensation. As expected, the chiral titanium complex is also effective for a variety of carbon-carbon bond forming processes such as the aldol and the Diels-Alder reactions. The aldol process constitutes one of the most fundamental bond constructions in organic synthesis. Therefore the development of chiral catalysts that promote asymmetic aldol reactions in a highly stereocontrolled and truly catalytic fashion has attracted much attention, for which the silyl enol ethers of ketones or esters have been used as a storable enolate component (Mukaiyama aldol condensation). The BINOL-derived titanium complex BINOL-TiCl2 can be used as an efficient catalyst for the Mukaiyama-ty pe aldol reaction of not only ketone si ly 1 enol ethers but also ester silyl enol ethers with control of absolute and relative stereochemistry (eq 11). ... [Pg.93]

Asymmetric Aldol-Type Reaction. CAB complex (2) is an excellent catalyst for the Mukaiyama condensation of simple achiral enol silyl ethers of ketones with various aldehydes. The CAB-catalyzed aldol process allows the formation of adducts in a highly diastereo- and enantioselective manner (up to 96% ee) under mild reaction conditions (eqs 4 and 5). The reactions are catalytic 20 mol % of catalyst is sufficient for efficient conversion, and the chiral auxiliary can be recovered and reused. [Pg.231]

CAB 2, R = H, derived from monoacyloxytartaric acid and diborane is also an excellent catalyst (20 mol %) for the Mukaiyama condensation of simple enol silyl ethers of achiral ketones with various aldehydes. The reactivity of aldol-type reactions can, furthermore, be improved, without reducing the enantioselectivity, by use of 10-20 mol % of 2, R = 3,5-(CF3)2C6H3, prepared from 3,5-bis(trifluoromethyl)phenyl-boronic acid and a chiral tartaric acid derivative. The enantioselectivity could also be improved, without reducing the chemical yield, by using 20 mol % 2, R = o-PhOCgH4, prepared from o-phenoxyphenylboronic acid and chiral tartaric acid derivative. The CAB 2-catalyzed aldol process enables the formation of adducts in a highly diastereo- and enantioselective manner (up to 99 % ee) under mild reaction conditions [47a,c]. These reactions are catalytic, and the chiral source is recoverable and re-usable (Eq. 62). [Pg.172]

Organoaluminum-catalyzed aldol condensation of aldehydes and silyl enol ethers has been reported [51]. Me2AlCl was found to be most effective and other organoalu-minum reagents such as McsAl, EtAlCl2, Et2AlCl, and M2AICI led to lower yields of /3-hydroxy ketones (Sch. 27). [Pg.207]

Cationic Pd complexes can be applied to the asymmetric aldol reaction. Shibasaki and coworkers reported that (/ )-BINAP PdCP, generated from a 1 1 mixture of (i )-BINAP PdCl2 and AgOTf in wet DMF, is an effective chiral catalyst for asymmetric aldol addition of silyl enol ethers to aldehydes [63]. For instance, treatment of trimethylsi-lyl enol ether of acetophenone 49 with benzaldehyde under the influence of 5 mol % of this catalyst affords the trimethylsilyl ether of aldol adduct 113 (87 % yield, 71 % ee) and desilylated product 114 (9 % yield, 73 % ee) as shown in Sch. 31. They later prepared chiral palladium diaquo complexes 115 and 116 from (7 )-BINAP PdCl2 and (i )-p-Tol-BINAP PdCl2, respectively, by reaction with 2 equiv. AgBF4 in wet acetone [64]. These complexes are tolerant of air and moisture, and afford similar reactivity and enantioselec-tivity in the aldol condensation of 49 and benzaldehyde. Sodeoka and coworkers have recently developed enantioselective Mannich-type reactions of silyl enol ethers with imi-nes catalyzed by binuclear -hydroxo palladium(II) complexes 117 and 118 derived from the diaquo complexes 115 and 116 [65]. These reactions are believed to proceed via a chiral palladium(fl) enolate. [Pg.593]

Because the aldol reaction is one of the most fundamental bond-construction processes in organic synthesis [86], much attention has been focused on the development of asymmetric catalysts for aldol reactions, using silyl enol ethers of ketones or esters as storable enolate components (the Mukaiyama aldol condensation) [87]. [Pg.817]


See other pages where Silyl ethers aldol condensation is mentioned: [Pg.463]    [Pg.137]    [Pg.115]    [Pg.867]    [Pg.61]    [Pg.135]    [Pg.77]    [Pg.528]    [Pg.909]    [Pg.73]    [Pg.159]    [Pg.449]    [Pg.278]    [Pg.380]    [Pg.135]    [Pg.909]    [Pg.111]   
See also in sourсe #XX -- [ Pg.944 , Pg.945 ]

See also in sourсe #XX -- [ Pg.944 , Pg.945 ]

See also in sourсe #XX -- [ Pg.944 , Pg.945 ]




SEARCH



Aldol condensate

Aldol condensation

Aldol condensation of silyl enol ethers

Condensations aldol condensation

Silyl enol ethers aldol condensation

Silyl enol ethers aldol condensation reactions

Silylated aldols

© 2024 chempedia.info