Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silicones bulk characteristics

A chemical property of silicones is the possibility of building reactivity on the polymer [1,32,33]. This allows the building of cured silicone networks of controlled molecular architectures with specific adhesion properties while maintaining the inherent physical properties of the PDMS chains. The combination of the unique bulk characteristics of the silicone networks, the surface properties of the PDMS segments, and the specificity and controllability of the reactive groups, produces unique materials useful as adhesives, protective encapsulants, coatings and sealants. [Pg.681]

In dentistry, silicones are primarily used as dental-impression materials where chemical- and bioinertness are critical, and, thus, thoroughly evaluated.546 The development of a method for the detection of antibodies to silicones has been reviewed,547 as the search for novel silicone biomaterials continues. Thus, aromatic polyamide-silicone resins have been reviewed as a new class of biomaterials.548 In a short review, the comparison of silicones with their major competitor in biomaterials, polyurethanes, has been conducted.549 But silicones are also used in the modification of polyurethanes and other polymers via co-polymerization, formation of IPNs, blending, or functionalization by grafting, affecting both bulk and surface characteristics of the materials, as discussed in the recent reviews.550-552 A number of papers deal specifically with surface modification of silicones for medical applications, as described in a recent reference.555 The role of silicones in biodegradable polyurethane co-polymers,554 and in other hydrolytically degradable co-polymers,555 was recently studied. [Pg.681]

The broadening of the characteristic peaks of the silicon XRD signal provides information about stress and size of the crystallites. Figure 7.4 shows the diffraction pattern of microporous silicon powders scraped from p-type Si electrodes and of a bulk silicon powder sample. The peak broadening increases with increasing formation current density. For low formation current densities a superposition of... [Pg.131]

An approximation of the lifetime in PS at RT using an electron-hole pair density equal to one pair per crystallite and the radiative recombination parameter of bulk silicon give values in the order of 10 ms [Ho3]. The estimated radiative lifetime of excitons is strongly size dependent [Sa4, Hi4, Hi8] and increases from fractions of microseconds to milliseconds, corresponding to an increase in diameter from 1 to 3 nm [Hy2, Ta3], as shown in Fig. 7.18. For larger crystallites a recombination via non-radiative channels is expected to dominate. The experimentally observed stretched exponential decay characteristic of the PL is interpreted as a consequence of the randomness of the porous skeleton structure [Sa5]. [Pg.155]

A cross-sectional schematic of a monolithic gas sensor system featuring a microhotplate is shown in Fig. 2.2. Its fabrication relies on an industrial CMOS-process with subsequent micromachining steps. Diverse thin-film layers, which can be used for electrical insulation and passivation, are available in the CMOS-process. They are denoted dielectric layers and include several silicon-oxide layers such as the thermal field oxide, the contact oxide and the intermetal oxide as well as a silicon-nitride layer that serves as passivation. All these materials exhibit a characteristically low thermal conductivity, so that a membrane, which consists of only the dielectric layers, provides excellent thermal insulation between the bulk-silicon chip and a heated area. The heated area features a resistive heater, a temperature sensor, and the electrodes that contact the deposited sensitive metal oxide. An additional temperature sensor is integrated close to the circuitry on the bulk chip to monitor the overall chip temperature. The membrane is released by etching away the silicon underneath the dielectric layers. Depending on the micromachining procedure, it is possible to leave a silicon island underneath the heated area. Such an island can serve as a heat spreader and also mechanically stabihzes the membrane. The fabrication process will be explained in more detail in Chap 4. [Pg.11]

For cubic crystals, which include silicon, properties described by other than a zero- or a second-rank tensor are anisotropic (17). Thus, in principle, whether or not a particular property is anisotropic can be predicted. There are some properties, however, for which the tensor rank is not known. In addition, in very thin crystal sections, the crystal may have two-dimensional characteristics and exhibit a different symmetry from the bulk, three-dimensional crystal (18). Table 4 is a listing of various isotropic and anisotropic silicon properties. Table 5 gives values for the more common physical properties and for some of the thermodynamic properties. Figure 5 shows some thermal properties. [Pg.529]

During the late 1960s and early 1970s, neutron activation analysis provided a new way to measure bulk chemical composition. Neutron activation analysis utilizes (n,y) reactions to identify elements. A sample is placed in a nuclear reactor where thermal neutrons are captured by atoms in the sample and become radioactive. When they decay, the radioactive isotopes emit characteristic y-rays that are measured to determine abundances. Approximately 35 elements are routinely measured by neutron activation analysis. A number of others produce radioactive isotopes that emit y-rays, but their half-lives are too short to be useful. Unfortunately, silicon is one of these elements. Other elements do not produce y-ray-emitting isotopes when irradiated with neutrons. There are two methods of using neutron activation to determine bulk compositions, instrumental neutron activation analysis (INAA) and radiochemical neutron activation analysis (RNAA). [Pg.519]

Consider an atmospheric-pressure process to deposit a silicon film from a silane (SifLj) precursor. The showerhead-to-wafer distance is 3 cm. In this process a helium carrier gas makes up the bulk of the flow, with the active silane accounting for only 0.17% of the inlet mixture. The precursor gases enter the reactor at 300 K, but the wafer temperature and inlet velocity are varied to observe different process characteristics. [Pg.693]

Phthalein test. Many phenols yield phthaleins, which give characteristic colorations in alkaline solution, when fused with phthalic anhydride and a little concentrated sulphuric acid. Place in a dry test tube 0.5 g of the compound and an equal bulk of pure phthalic anhydride, mix well together and add 1 drop of concentrated sulphuric acid. Stand the tube for 3-4 minutes in a small beaker of Silicone oil (or paraffin oil) previously heated to 160 °C. Remove from the bath, allow to cool, add 4 ml of 5 per cent sodium hydroxide solution and stir until the fused mass has dissolved. Dilute with an equal volume of water, filter and examine the colour of the filtrate against a white background if the solution exhibits a fluorescence, observe the colour against a black background. [Pg.1213]

The descriptor was a product of the correlation weights, CW(Ik), calculated by the Monte Carlo method for each kth element of a special SMILES-like notation introduced by the authors. The notation codes the following characteristics the atom composition, the type of substance (bulk or not, ceramic or not), and the temperature of synthesis. The QSAR model constructed in this way was validated with the use of many different splits into training (n 21) and validation (n=8) sets. Individual sub-models are characterized by high goodness-of-fit (0.972 applicability domain of the model, it is not known if all the compounds (metal oxides, nitrides, mullite, and silicon carbide) can be truly modeled together. [Pg.211]


See other pages where Silicones bulk characteristics is mentioned: [Pg.679]    [Pg.131]    [Pg.355]    [Pg.241]    [Pg.166]    [Pg.2398]    [Pg.560]    [Pg.691]    [Pg.26]    [Pg.5]    [Pg.514]    [Pg.45]    [Pg.411]    [Pg.320]    [Pg.682]    [Pg.118]    [Pg.122]    [Pg.130]    [Pg.134]    [Pg.226]    [Pg.50]    [Pg.5]    [Pg.540]    [Pg.93]    [Pg.328]    [Pg.22]    [Pg.101]    [Pg.519]    [Pg.26]    [Pg.257]    [Pg.1483]    [Pg.30]    [Pg.157]    [Pg.236]    [Pg.281]    [Pg.28]    [Pg.157]    [Pg.41]   
See also in sourсe #XX -- [ Pg.3 ]




SEARCH



Bulk characteristics

© 2024 chempedia.info