Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Signal potentiometric

Initial attempts at developing precipitation titration methods were limited by a poor end point signal. Finding the end point by looking for the first addition of titrant that does not yield additional precipitate is cumbersome at best. The feasibility of precipitation titrimetry improved with the development of visual indicators and potentiometric ion-selective electrodes. [Pg.354]

Most potentiometric electrodes are selective for only the free, uncomplexed analyte and do not respond to complexed forms of the analyte. Solution conditions, therefore, must be carefully controlled if the purpose of the analysis is to determine the analyte s total concentration. On the other hand, this selectivity provides a significant advantage over other quantitative methods of analysis when it is necessary to determine the concentration of free ions. For example, calcium is present in urine both as free Ca + ions and as protein-bound Ca + ions. If a urine sample is analyzed by atomic absorption spectroscopy, the signal is proportional to the total concentration of Ca +, since both free and bound calcium are atomized. Analysis with a Ca + ISE, however, gives a signal that is a function of only free Ca + ions since the protein-bound ions cannot interact with the electrode s membrane. [Pg.489]

End Point Determination Adding a mediator solves the problem of maintaining 100% current efficiency, but does not solve the problem of determining when the analyte s electrolysis is complete. Using the same example, once all the Fe + has been oxidized current continues to flow as a result of the oxidation of Ce + and, eventually, the oxidation of 1T20. What is needed is a means of indicating when the oxidation of Fe + is complete. In this respect it is convenient to treat a controlled-current coulometric analysis as if electrolysis of the analyte occurs only as a result of its reaction with the mediator. A reaction between an analyte and a mediator, such as that shown in reaction 11.31, is identical to that encountered in a redox titration. Thus, the same end points that are used in redox titrimetry (see Chapter 9), such as visual indicators, and potentiometric and conductometric measurements, may be used to signal the end point of a controlled-current coulometric analysis. For example, ferroin may be used to provide a visual end point for the Ce -mediated coulometric analysis for Fe +. [Pg.500]

Describe clearly the principle and operation of potentiometric stripping analysis (PSA). How it is differed from anodic stripping voltammetry (ASV) What is the quantitative signal What is its advantage over ASV ... [Pg.99]

When measuring a signal, one records the magnitude of the output or the response of a measurement device as a function of an independent variable. For instance, in chromatography the signal of a Flame Ionization Detector (FID) is measured as a function of time. In spectrometry the signal of a photomultiplier or diode array is measured as a function of the wavelength. In a potentiometric titration the current of an electrode is measured as a function of the added volume of titrant. [Pg.507]

As shown in Fig. 6(a), the SHG response of membrane 2 to aqueous KSCN was found to be different from that to KCl. Upon increasing the KSCN concentration, the SHG signal initially increased but reached a maximum at 0.2 M, and then decreased. The potentio-metric response of the same membrane also exhibited a maximum at a K" " ion activity of ca. 0.1 M [see inset in Fig. 6(a)]. Thus, the decrease in the SHG and potentiometric responses were found to start roughly at the same KSCN concentration. This may be attributed to a decrease in the number of oriented K -ionophore 2 complexes at the interface with the appearance of SCN ions in the membrane. [Pg.448]

One of the most fruitful uses of potentiometry in analytical chemistry is its application to titrimetry. Prior to this application, most titrations were carried out using colour-change indicators to signal the titration endpoint. A potentiometric titration (or indirect potentiometry) involves measurement of the potential of a suitable indicator electrode as a function of titrant volume. The information provided by a potentiometric titration is not the same as that obtained from a direct potentiometric measurement. As pointed out by Dick [473], there are advantages to potentiometric titration over direct potentiometry, despite the fact that the two techniques very often use the same type of electrodes. Potentiometric titrations provide data that are more reliable than data from titrations that use chemical indicators, but potentiometric titrations are more time-consuming. [Pg.668]

In electroanalysis, the techniques are pre-eminently based on processes that take place when two separate poles, the so-called electrodes, are in contact with a liquid electrolyte, which usually is a solution of the substance to be analysed, the analyte. By means of electrometry, i.e., by measuring the electrochemical phenomena occurring or intentionally generated, one obtains signals from which chemical-analytical data can be derived through calibration. Often electrometry (e.g., potentiometry) is applied in order to follow a reaction that goes to completion (e.g., a titration), which essentially represents a stoichiometric method, so that the electrometry merely acts as an end-point indicator of the reaction (which means a potentiometric titration). The electrochemical phenomena in electroanalysis, whether they take place in the solution or at the electrodes, are often complicated and their explanation requires a systematic treatment of electroanalysis. [Pg.20]

The transfer of an automated analysis from the laboratory to the plant will often require special precautions for instance, while turbidities in a process stream can cause a loss of selective absorptivity in a spectrophotometric measurement, in potentiometric methods fouling of the electrodes, potential leakage in metal containers or tubing and loss of signal in remote control may occur (see later). [Pg.327]

In this automatic system, the authors preferably used coulometric generation of titrant (cf., microcoulometric determination of deviations in the above end-point titration ), e.g., H, OH, Ag, Hg2+, Br2,12, Fe(CN) (cf., Table 1 in ref. 63). The detection method may be potentiometric (logarithmic signal), amperometric (linear signal), biamperometric, conductometric, oscillometric, etc. Moreover, the authors evaluated triangle programmed titration curves by... [Pg.347]

After passing through the column, the separated solutes are sensed by an in-line detector. The output of the detector is an electrical signal, the variation of which is displayed on a potentiometric recorder, a computing integrator or a vdu screen. Most of the popular detectors in hplc are selective devices, which means that they may not respond to all of the solutes that are present in a mixture. At present there is no universal detector for hplc that can compare with the sensitivity and performance of the flame ionisation detector used in gas chromatography. Some solutes are not easy to detect in hplc, and have to be converted into a detectable form after they emerge from the column. This approach is called post-column derivatisation. [Pg.19]

Couto et al. [11] developed a flow injection system with potentiometric detection for determination of TC, OTC, and CTC in pharmaceutical products. A homogeneous crystalline CuS/Ag2S double membrane tubular electrode was used to monitor the Cu(II) decrease due to its complexation with OTC. The system allows OTC determination within a 49.1 1.9 x 103 ppm and a precision better than 0.4%. A flow injection method for the assay of OTC, TC, and CTC in pharmaceutical formulations was also developed by Wangfuengkanagul et al. [12] using electrochemical detection at anodized boron-doped diamond thin-film electrode. The detection limit was found to be 10 nM (signal-to-noise ratio = 3). [Pg.102]

The behavior of potentiometric and pulsed galvanostatic polyion sensors can be directly compared. Figure 4.11 shows the time trace for the resulting protamine calibration curve in 0.1 M NaCl, obtained with this method (a) and with a potentiometric protamine membrane electrode (b) analogous to that described in [42, 43], Because of the effective renewal of the electrode surface between measuring pulses, the polyion response in (a) is free of any potential drift, and the signal fully returns to baseline after the calibration run. In contrast, the response of the potentiometric protamine electrode (b) exhibits very strong potential drifts. [Pg.115]

Where R is the gas constant, T is the temperature, and F is the Faraday constant. Caused by the logarithmic correlation between the gas concentration and the voltage signal, the potentiometric measurement is best suited for measurements of small amounts of oxygen. A well-known application of this principle has been realized in the so called lambda-probe for automotive applications where they are used to control the lambda value within a small interval around 1 = 1. The lambda-value is defined by the relation between the existing air/fuel ratio and the theoretical air/fuel ratio for a stoichiometric mixture composition ... [Pg.148]

In general, the signal from a gas chromatograph is recorded continuously as a function of time by means of a potentiometric device. Most frequently, a recorder of 1-10 mV full-scale deflection ( 10 inches) and having a response time 1 second or less is quite adequate. [Pg.441]

The signal emerging from the detector of a HPLC is recorded continuously as function of time most commonly with the help of a potentiometric recorder. Invariably, a recorder of 1 to 10 mV full-scale deflec-... [Pg.465]

TTie pH signal is fed via a pH meter to a potentiometric recorder and to a neutrahzation controller, which compares the electrode e.m.f. with pre-selected values and opens or closes gas-control valves accordingly. Depending on the pH, it is possible to obtain a flow of air, ammonia or a mixture of both gases. By careful adjustment of the potentiometers and the flow-rates of ammonia and air, it is possible to control the final pH and also to keep the digest within a fairly closely defined pH range during the neutrahzation process. [Pg.128]

An ideal sensor recognizes analytes in a sensitive, selective, and reversible manner. This recognition is in turn reported as a clear response. In recent years, conducting polymers have emerged as practical and viable transducers for translating analyte-receptor and nonspecific interactions into observable signals. Transduction schemes include electronic sensors using conductometric and potentiometric methods and optical sensors based on colorimetric and fluorescence methods [1]. [Pg.152]


See other pages where Signal potentiometric is mentioned: [Pg.301]    [Pg.301]    [Pg.110]    [Pg.248]    [Pg.79]    [Pg.1]    [Pg.163]    [Pg.172]    [Pg.184]    [Pg.177]    [Pg.341]    [Pg.3]    [Pg.67]    [Pg.443]    [Pg.810]    [Pg.347]    [Pg.107]    [Pg.128]    [Pg.149]    [Pg.154]    [Pg.261]    [Pg.310]    [Pg.370]    [Pg.472]    [Pg.145]    [Pg.282]    [Pg.534]    [Pg.125]    [Pg.409]    [Pg.441]    [Pg.466]    [Pg.1]    [Pg.129]   
See also in sourсe #XX -- [ Pg.21 , Pg.45 , Pg.91 , Pg.97 , Pg.155 ]

See also in sourсe #XX -- [ Pg.21 , Pg.45 , Pg.91 , Pg.97 , Pg.155 ]




SEARCH



Potentiometric

© 2024 chempedia.info