Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Separators schematic

Fig. 46. Characteristics of the packing arrangement in unhydrated 1 imidazole with a separate schematics emphasizing the central loop topology lu) (H-bonds are indicated as broken lines backbone H atoms are omitted O atoms dotted N atoms hatched the hatched segments in the schematic drawing signify the imidazole rings)... Fig. 46. Characteristics of the packing arrangement in unhydrated 1 imidazole with a separate schematics emphasizing the central loop topology lu) (H-bonds are indicated as broken lines backbone H atoms are omitted O atoms dotted N atoms hatched the hatched segments in the schematic drawing signify the imidazole rings)...
OTFLEXES Figure 3. Haptoglobin separation schematic. A schematic illustrating typical results of a Hp determination run in 8 mm, 10% starch gel prepared with tris citric acid buffer at pH = 8.6. The tank buffer is boric acid, pH — 7.9. The electrophoresis is run at 100 V for 17 hr at 4°C. The Hp-Hb complexes are stained by virtue of the peroxidase reaction of hemoglobin which gives a o color reaction with benzidine. [Pg.148]

Referring to the generic separation schematic (Figure 3.28), assume that it represents a single stage of an equilibrium-based process for the separation of a binary feed mixture. [Pg.65]

Figure 3. Simplified cell separation schematic of tangential flow filtration system. Figure 3. Simplified cell separation schematic of tangential flow filtration system.
Figure 5. Mud-gas separator schematic, showing foam %reak-ouf ... Figure 5. Mud-gas separator schematic, showing foam %reak-ouf ...
Rgure 6.15 Temperature-Composition Phase Diagram of a System with Liquid-Liquid Phase Separation (Schematic). [Pg.283]

Prior to about 1920, flotation procedures were rather crude and rested primarily on the observation that copper and lead-zinc ore pulps (crushed ore mixed with water) could be benefacted (improved in mineral content) by treatment with large amounts of fatty and oily materials. The mineral particles collected in the oily layer and thus could be separated from the gangue and the water. Since then, oil flotation has been largely replaced by froth or foam flotation. Here, only minor amounts of oil or surfactant are used and a froth is formed by agitating or bubbling air through the suspension. The oily froth or foam is concentrated in mineral particles and can be skimmed off as shown schematically in Fig. XIII-4. [Pg.472]

Figure Al.7.1. Schematic diagram illustrating terraces, steps, and defects, (a) Perfect flat terraces separated by a straight, monoatomic step, (b) A surface containing various defects. Figure Al.7.1. Schematic diagram illustrating terraces, steps, and defects, (a) Perfect flat terraces separated by a straight, monoatomic step, (b) A surface containing various defects.
Figure Bl.15.8. (A) Left side energy levels for an electron spin coupled to one nuclear spin in a magnetic field, S= I =, gj >0, a<0, and a l 2h)<(a. Right side schematic representation of the four energy levels with )= Mg= , Mj= ). +-)=1, ++)=2, -)=3 and -+)=4. The possible relaxation paths are characterized by the respective relaxation rates W. The energy levels are separated horizontally to distinguish between the two electron spin transitions. Bottom ENDOR spectra shown when a /(21j)< ca (B) and when co < a /(2fj) (C). Figure Bl.15.8. (A) Left side energy levels for an electron spin coupled to one nuclear spin in a magnetic field, S= I =, gj >0, a<0, and a l 2h)<(a. Right side schematic representation of the four energy levels with )= Mg= , Mj= ). +-)=1, ++)=2, -)=3 and -+)=4. The possible relaxation paths are characterized by the respective relaxation rates W. The energy levels are separated horizontally to distinguish between the two electron spin transitions. Bottom ENDOR spectra shown when a /(21j)< ca (B) and when co < a /(2fj) (C).
More generally, the relaxation follows generalized first-order kinetics with several relaxation times i., as depicted schematically in figure B2.5.2 for the case of tliree well-separated time scales. The various relaxation times detemime the tiimmg points of the product concentration on a logaritlnnic time scale. These relaxation times are obtained from the eigenvalues of the appropriate rate coefficient matrix (chapter A3.41. The time resolution of J-jump relaxation teclmiques is often limited by the rate at which the system can be heated. With typical J-jumps of several Kelvin, the time resolution lies in the microsecond range. [Pg.2119]

Figure B2.5.5. Schematic representation of a shock-tube apparatus. The diapliragm d separates the high-... Figure B2.5.5. Schematic representation of a shock-tube apparatus. The diapliragm d separates the high-...
Figure 2. A schematic picture describing the three consecutive sub-Hilbert spaces, namely, the (P — l)th, the Pth, and the (P + l)th. The dotted lines are separation lines. Figure 2. A schematic picture describing the three consecutive sub-Hilbert spaces, namely, the (P — l)th, the Pth, and the (P + l)th. The dotted lines are separation lines.
Shorthand Notation for Electrochemical Cells Although Figure 11.5 provides a useful picture of an electrochemical cell, it does not provide a convenient representation. A more useful representation is a shorthand, or schematic, notation that uses symbols to indicate the different phases present in the electrochemical cell, as well as the composition of each phase. A vertical slash ( ) indicates a phase boundary where a potential develops, and a comma (,) separates species in the same phase, or two phases where no potential develops. Shorthand cell notations begin with the anode and continue to the cathode. The electrochemical cell in Figure 11.5, for example, is described in shorthand notation as... [Pg.467]

Schematics showing the basis of separation in (a) adsorption chromatography, (b) partition chromatography, (c) ion-exchange chromatography, (d) size-exciusion chromatography, and (e) eiectrophoresis. For the separations in (a), (b), and (d) the soiute represented by the soiid circie ( ) is the more strongiy retained. Schematics showing the basis of separation in (a) adsorption chromatography, (b) partition chromatography, (c) ion-exchange chromatography, (d) size-exciusion chromatography, and (e) eiectrophoresis. For the separations in (a), (b), and (d) the soiute represented by the soiid circie ( ) is the more strongiy retained.
In gas chromatography (GC) the sample, which may be a gas or liquid, is injected into a stream of an inert gaseous mobile phase (often called the carrier gas). The sample is carried through a packed or capillary column where the sample s components separate based on their ability to distribute themselves between the mobile and stationary phases. A schematic diagram of a typical gas chromatograph is shown in Figure 12.16. [Pg.563]

A schematic illustration of a typical inlet apparatus for separating volatile hydrides from the analyte solution, in which they are generated upon reduction with sodium tetrahydroborate. When the mixed analyte solution containing volatile hydrides enters the main part of the gas/liquid separator, the volatiles are released and mix with argon sweep and makeup gas, with which they are transported to the center of the plasma. The unwanted analyte solution drains from the end of the gas/liquid separator. The actual construction details of these gas/liquid separators can vary considerably, but all serve the same purpose. In some of them, there can be an intermediate stage for removal of air and hydrogen from the hydrides before the latter are sent to the plasma. [Pg.100]

Schematic diagram of an orthogonal Q/TOF instrument. In this example, an ion beam is produced by electrospray ionization. The solution can be an effluent from a liquid chromatography column or simply a solution of an analyte. The sampling cone and the skimmer help to separate analyte ions from solvent, The RF hexapoles cannot separate ions according to m/z values and are instead used to help confine the ions into a narrow beam. The quadrupole can be made to operate in two modes. In one (wide band-pass mode), all of the ion beam passes through. In the other (narrow band-pass mode), only ions selected according to m/z value are allowed through. In narrow band-pass mode, the gas pressure in the middle hexapole is increased so that ions selected in the quadrupole are caused to fragment following collisions with gas molecules. In both modes, the TOF analyzer is used to produce the final mass spectrum. Schematic diagram of an orthogonal Q/TOF instrument. In this example, an ion beam is produced by electrospray ionization. The solution can be an effluent from a liquid chromatography column or simply a solution of an analyte. The sampling cone and the skimmer help to separate analyte ions from solvent, The RF hexapoles cannot separate ions according to m/z values and are instead used to help confine the ions into a narrow beam. The quadrupole can be made to operate in two modes. In one (wide band-pass mode), all of the ion beam passes through. In the other (narrow band-pass mode), only ions selected according to m/z value are allowed through. In narrow band-pass mode, the gas pressure in the middle hexapole is increased so that ions selected in the quadrupole are caused to fragment following collisions with gas molecules. In both modes, the TOF analyzer is used to produce the final mass spectrum.
Schematic diagram showing the injection of a mixture of four substances (A, B, C, D) onto a GC column, foliowed by their separation into individuai components, their detection, and the dispiay (gas chromatogram) of the separated materiais emerging at different times from the coiumn. Schematic diagram showing the injection of a mixture of four substances (A, B, C, D) onto a GC column, foliowed by their separation into individuai components, their detection, and the dispiay (gas chromatogram) of the separated materiais emerging at different times from the coiumn.
Schematic diagram of a mass spectrometer. After insertion of a sampie (A), it is ionized, the ions are separated according to m/z value, and the numbers of ions (abundances) at each m/z value are plotted against m/z to give the mass spectrum of A. By studying the mass spectrum, A can be identified,... Schematic diagram of a mass spectrometer. After insertion of a sampie (A), it is ionized, the ions are separated according to m/z value, and the numbers of ions (abundances) at each m/z value are plotted against m/z to give the mass spectrum of A. By studying the mass spectrum, A can be identified,...
Figure 8.2 Schematic illustrations of AGm versus X2 showing how jUj -may be determined by the tangent drawn at any point, (a) The polymer-solvent system forms a single solution at all compositions, (b) Compositions between the two minima separate into equilibrium phases P and Q. Figure 8.2 Schematic illustrations of AGm versus X2 showing how jUj -may be determined by the tangent drawn at any point, (a) The polymer-solvent system forms a single solution at all compositions, (b) Compositions between the two minima separate into equilibrium phases P and Q.
Figure 8.2b is a schematic representation of versus X2 for a system which shows a miscibility gap. Any attempt to prepare a mixture between P and Q in composition will result in separation into the two phases P and Q at equilibrium. [Pg.532]

Figure 8.12 Schematic illustration showing with the solid line how the probability of placement varies with the distance of separation between the centers of the coils. The broken line is the equivalent result for hard spheres. Figure 8.12 Schematic illustration showing with the solid line how the probability of placement varies with the distance of separation between the centers of the coils. The broken line is the equivalent result for hard spheres.
A schematic of the MGCC process is shown in Figure 9. The mixed Cg aromatic feed is sent to an extractor (unit A) where it is in contact with HF—BF and hexane. The MX—HF—BF complex is sent to the decomposer (unit B) or the isomerization section (unit D). In the decomposer, BF is stripped and taken overhead from a condensor—separator (unit C), whereas HF in hexane is recycled from the bottom of C. Recovered MX is sent to column E for further purification. The remaining Cg aromatic compounds and hexane are sent to raffinate column E where residual BE and HE are separated, as well as hexane for recycle. Higher boiling materials are rejected in column H, and EB and OX are recovered in columns I and J. The overhead from J is fed to unit K for PX separation. The raffinate or mother Hquor is then recycled for isomerization. [Pg.420]

The process takes place in two stages that must be physically separate but temporally adjacent. Figure 1 presents a schematic of a typical parylene deposition process, also indicating the approximate operating conditions. [Pg.427]


See other pages where Separators schematic is mentioned: [Pg.370]    [Pg.228]    [Pg.249]    [Pg.52]    [Pg.524]    [Pg.370]    [Pg.228]    [Pg.249]    [Pg.52]    [Pg.524]    [Pg.184]    [Pg.1426]    [Pg.1432]    [Pg.1568]    [Pg.1847]    [Pg.1916]    [Pg.2123]    [Pg.2223]    [Pg.170]    [Pg.667]    [Pg.211]    [Pg.466]    [Pg.578]    [Pg.634]    [Pg.649]    [Pg.247]    [Pg.414]    [Pg.168]   
See also in sourсe #XX -- [ Pg.255 ]




SEARCH



Phase separation schematic illustration

Schematic illustration of elution chromatography. Three solutes are separating depending on the affinity to stationary phase at different times

Schematic of the batch centrifuge separating two immiscible fluids

Schematic of the continuous gravity separator separating two immiscible fluids

Separation processes, schematic

Separation schematic representation

Separator schematic illustration

© 2024 chempedia.info