Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vapor-liquid separation

Distillation uses an energy-separating agent heat. It is an equilibrium-limited separation. Vapor-liquid equilibrium (VLB) is the type of equilibrium by which distillation columns separate, and vapor pressure is the primary property difference that forms the basis for separation. [Pg.116]

CO == 0.35. Figure 3.10 shows the deviation for the molar liquid volume of -hexane as a function of reduced temperature. This figure reveals that the deviation is nearly constant up to a reduced temperature of 0.75. The volume-translation concept was introduced to take advantage of this feature (Peneloux et al., 1982 Jhaveri and Youngren, 1988). The volume-translation technique separates vapor-liquid-equilibria (VLE) from density calculations (see Example 3.3). The translation along the volume axis is given by... [Pg.145]

The method proposed in this monograph has a firm thermodynamic basis. For vapo/-liquid equilibria, the method may be used at low or moderate pressures commonly encountered in separation operations since vapor-phase nonidealities are taken into account. For liquid-liquid equilibria the effect of pressure is usually not important unless the pressure is very large or unless conditions are near the vapor-liquid critical region. [Pg.2]

In the calculation of vapor-liquid equilibria, it is necessary to calculate separately the fugacity of each component in each of the two phases. The liquid and vapor phases require different techniques in this chapter we consider calculations for the vapor phase. [Pg.25]

In modern separation design, a significant part of many phase-equilibrium calculations is the mathematical representation of pure-component and mixture enthalpies. Enthalpy estimates are important not only for determination of heat loads, but also for adiabatic flash and distillation computations. Further, mixture enthalpy data, when available, are useful for extending vapor-liquid equilibria to higher (or lower) temperatures, through the Gibbs-Helmholtz equation. ... [Pg.82]

The same fundamental development as presented here for vapor-liquid flash calculations can be applied to liquid-liquid equilibrium separations. In this case, the feed splits into an extract at rate E and a raffinate at rate R, which are in equilibrium with each other. The compositions of these phases are... [Pg.115]

It is important to stress that unnecessary thermodynamic function evaluations must be avoided in equilibrium separation calculations. Thus, for example, in an adiabatic vapor-liquid flash, no attempt should be made iteratively to correct compositions (and K s) at current estimates of T and a before proceeding with the Newton-Raphson iteration. Similarly, in liquid-liquid separations, iterations on phase compositions at the current estimate of phase ratio (a)r or at some estimate of the conjugate phase composition, are almost always counterproductive. Each thermodynamic function evaluation (set of K ) should be used to improve estimates of all variables in the system. [Pg.118]

The vapor-liquid equilibrium separation calculations considered here are for two cases, isothermal and adiabatic, both at fixed pressure. [Pg.120]

Examples of Vapor-Liquid Separation Calculations Conducted with Subroutine FLASH... [Pg.123]

Liquid-liquid equilibrium separation calculations are superficially similar to isothermal vapor-liquid flash calculations. They also use the objective function. Equation (7-13), in a step-limited Newton-Raphson iteration for a, which is here E/F. However, because of the very strong dependence of equilibrium ratios on phase compositions, a computation as described for isothermal flash processes can converge very slowly, especially near the plait point. (Sometimes 50 or more iterations are required. )... [Pg.124]

DESCRIPTIONS AND LISTINGS OF SUBROUTINES FOR CALCULATION OF VAPOR-LIQUID EQUILIBRIUM SEPARATIONS... [Pg.318]

The computer subroutines for calculation of vapor-liquid equilibrium separations, including determination of bubble-point and dew-point temperatures and pressures, are described and listed in this Appendix. These are source routines written in American National Standard FORTRAN (FORTRAN IV), ANSI X3.9-1978, and, as such, should be compatible with most computer systems with FORTRAN IV compilers. Approximate storage requirements for these subroutines are given in Appendix J their execution times are strongly dependent on the separations being calculated but can be estimated (CDC 6400) from the times given for the thermodynamic subroutines they call (essentially all computation effort is in these thermodynamic subroutines). [Pg.318]

FLASH determines the equilibrium vapor and liquid compositions resultinq from either an isothermal or adiabatic equilibrium flash vaporization for a mixture of N components (N 20). The subroutine allows for presence of separate vapor and liquid feed streams for adaption to countercurrent staged processes. [Pg.319]

DRIVER PROGRAMS FOR VAPOR-LIQUID AND LIQUID-LIQUID EQUILIBRIUM SEPARATION CALCULATIONS... [Pg.347]

Examples of main programs calling subroutines FLASH and ELIPS for vapor-liquid and liquid-liquid separation calculations, respectively, are described in this Appendix. These are intended only to illustrate the use of the subroutines and to provide a means of quickly evaluating their performance on systems of interest. It is expected that most users will write their own main prograns utilizing FLASH and ELIPS, and the other subroutines presented in this monograph,to suit the requirements of their separation calculations. [Pg.347]

Illustrates use of subroutine FLASH for vapor-liquid equilibrium separation calculations for up to 10 components and of subroutine PARIN for parameter loading. [Pg.348]

Figure 3.1a shows a flash drum used to separate by gravity a vapor-liquid mixture. The velocity of the vapor through the flash drum must be less than the settling velocity of the liquid drops. Figure 3.11) shows a simple gravity settler for removing a... [Pg.68]

V = vapor flow rate from the separator L = liquid flow rate from the separator Zi = mole fraction of component i in the feed y = mole fraction of component i in the vapor Xi = mole fraction of component i in the liquid... [Pg.106]

A vapor-liquid equilibrium calculation shows that a good separation is obtained, but the required product purity of butadiene <0.5 wt% and sulphur... [Pg.119]

Some small amount of byproduct formation occurs. The principal byproduct is di-isopropyl ether. The reactor product is cooled, and a phase separation of the resulting vapor-liquid mixture produces a vapor containing predominantly propylene and propane and a liquid containing predominantly the other components. Unreacted propylene is recycled to the reactor, and a purge prevents the buildup of propane. The first distillation in Fig. 10.3a (column Cl) removes... [Pg.281]

Fig. XI-11. Relation of adsorption from binary liquid mixtures to the separate vapor pressure adsorption isotherms, system ethanol-benzene-charcoal (n) separate mixed-vapor isotherms (b) calculated and observed adsorption from liquid mixtures. (From Ref. 143.)... Fig. XI-11. Relation of adsorption from binary liquid mixtures to the separate vapor pressure adsorption isotherms, system ethanol-benzene-charcoal (n) separate mixed-vapor isotherms (b) calculated and observed adsorption from liquid mixtures. (From Ref. 143.)...
This equation may be applied separately to the liquid phase and to the vapor phase to yield the pure-species values ( ) and ( ) For vapor/ liquid equilibrium (Eq. [4-280]), these two quantities are equal. Given parameters Oj and bj, the pressure P in Eq. (4-230) that makes these two values equal is the equihbrium vapor pressure of pure species i as predicted by the equation of state. [Pg.538]

Cavitation Loosely regarded as related to water hammer and hydrauhc transients because it may cause similar vibration and equipment damage, cavitation is the phenomenon of collapse of vapor bubbles in flowing liquid. These bubbles may be formed anywhere the local liquid pressure drops below the vapor pressure, or they may be injected into the hquid, as when steam is sparged into water. Local low-pressure zones may be produced by local velocity increases (in accordance with the Bernouhi equation see the preceding Conservation Equations subsection) as in eddies or vortices, or near bound-aiy contours by rapid vibration of a boundaiy by separation of liquid during water hammer or by an overaU reduction in static pressure, as due to pressure drop in the suction line of a pump. [Pg.670]

Kettle-type reboilers, evaporators, etc., are often U-tube exchangers with enlarged shell sec tions for vapor-liquid separation. The U-tube bundle replaces the floating-heat bundle of Fig. 11-36. ... [Pg.1069]

Vapor-Liquid Separation This design problem may be important for a number of reasons. The most important is usually prevention of entrainment because of value or product lost, pollution, contamination of the condensed vapor, or fouling or corrosion of the surfaces on which the vapor is condensed. Vapor-liquid separation in the vapor head may also oe important when spray forms deposits on the w ls, when vortices increase head requirements of circulating pumps, and when shoiT circuiting allows vapor or unflashed liquid to be carried back to the circulating pump ana heating element. [Pg.1137]

In a submerged-tube FC evaporator, all heat is imparted as sensible heat, resulting in a temperature rise of the circulating hquor that reduces the overall temperature difference available for heat transfer. Temperature rise, tube proportions, tube velocity, and head requirements on the circulating pump all influence the selec tion of circulation rate. Head requirements are frequently difficult to estimate since they consist not only of the usual friction, entrance and contraction, and elevation losses when the return to the flash chamber is above the liquid level but also of increased friction losses due to flashing in the return line and vortex losses in the flash chamber. Circulation is sometimes limited by vapor in the pump suction hne. This may be drawn in as a result of inadequate vapor-liquid separation or may come from vortices near the pump suction connection to the body or may be formed in the line itself by short circuiting from heater outlet to pump inlet of liquor that has not flashed completely to equilibrium at the pressure in the vapor head. [Pg.1139]

Sometimes, alternative single- or multiple-stage vapor-liquid separation operations, of the types shown in Fig. 13-7, may be more suitable than distillatiou for the specified task. [Pg.1244]

Data on the gas-liquid or vapor-liquid equilibrium for the system at hand. If absorption, stripping, and distillation operations are considered equilibrium-limited processes, which is the usual approach, these data are critical for determining the maximum possible separation. In some cases, the operations are are considerea rate-based (see Sec. 13) but require knowledge of eqmlibrium at the phase interface. Other data required include physical properties such as viscosity and density and thermodynamic properties such as enthalpy. Section 2 deals with sources of such data. [Pg.1350]

Gases and liquids may be intentionally contacted as in absorption and distillation, or a mixture of phases may occur unintentionally as in vapor condensation from inadvertent cooling or liquid entrainment from a film. Regardless of the origin, it is usually desirable or necessary ultimately to separate gas-liquid dispersions. While separation will usually occur naturally, the rate is often economically intolerable and separation processes are employed to accelerate the step. [Pg.1427]

Membrane Pervaporation Since 1987, membrane pei vapora-tion has become widely accepted in the CPI as an effective means of separation and recovery of liquid-phase process streams. It is most commonly used to dehydrate hquid hydrocarbons to yield a high-purity ethanol, isopropanol, and ethylene glycol product. The method basically consists of a selec tively-permeable membrane layer separating a liquid feed stream and a gas phase permeate stream as shown in Fig. 25-19. The permeation rate and selectivity is governed bv the physicochemical composition of the membrane. Pei vaporation differs From reverse osmosis systems in that the permeate rate is not a function of osmotic pressure, since the permeate is maintained at saturation pressure (Ref. 24). [Pg.2194]

Types of Equipment The three most commonly used types of equipment for handling emergency relief device effluents are blowdown drums (also called knockout drums or catch tanks), cyclone vapor-liquid separators, and quench tanks (also called passive scruh-hers). These are described as follows. [Pg.2293]

Horizontal Blowdown Drum/Catch Tank This type of drum, shown in Fig. 26-16, combines both the vapor-liquid separation and holdup functions in one vessel. Horizontal drums are commonly used where space is plentiful, such as in petroleum refineries and petrochemical plants. The two-phase mixture usually enters at one end and the vapor exits at the other end. For two-phase streams with very high vapor flow rates, inlets may be provided at each end, with the vapor outlet at the center of the drum, thus minimizing vapor velocities at the inlet and aiding vapor-hquid separation. [Pg.2293]

Cyclone Separator with Separate Catch Tank This type of blowdown system, shown in Fig. 26-17 and 26-18, is frequently used in chemical plants where plot pan space is hmited. The cyclone performs the vapor-liquid separation, while the catch tank accumulates the hquid from the cyclone. This arrangement allows location of the cyclone knockout drum close to the reactor so that the length of the relief device discharge hne can be minimized. The cyclone nas internals, vital to its proper operation, which will be discussed in the following sections. [Pg.2293]


See other pages where Vapor-liquid separation is mentioned: [Pg.893]    [Pg.233]    [Pg.260]    [Pg.893]    [Pg.233]    [Pg.260]    [Pg.111]    [Pg.120]    [Pg.83]    [Pg.478]    [Pg.508]    [Pg.1033]    [Pg.1033]    [Pg.1086]    [Pg.1138]    [Pg.1140]    [Pg.1141]    [Pg.1141]    [Pg.1242]    [Pg.1247]    [Pg.1319]   
See also in sourсe #XX -- [ Pg.116 ]

See also in sourсe #XX -- [ Pg.116 ]




SEARCH



Cyclone vapor-liquid separator

Horizontal Vapor-Liquid Separator Nomograph

Recycling with vapor-liquid-separation

Silicone Membranes for Gas, Vapor and Liquid Phase Separations

Sizing of Vapor-Liquid Separators

Sizing vapor/liquid separator

Solid-liquid-vapor separators

Two-phase vapor-liquid separator

Vapor separation

Vapor-Liquid Separator Nomograph

Vapor-liquid separation processes (

Vapor-liquid separators

Vapor-liquid separators

Vapor-liquid separators Centrifugal

Vapor-liquid separators Entrainment

Vapor-liquid separators Falling film evaporators

Vapor-liquid separators Flash tanks

Vapor-liquid separators Flashing

Vapor-liquid separators Foaming

Vapor-liquid separators Other types

Vapor-liquid separators Solid deposition

Vapor-liquid separators Splashing

Vapor-liquid separators Wire mesh

© 2024 chempedia.info