Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Separation solid-liquid references

Definitions Drying generally refers to the removal of a liquid from a solid by evaporation. Mechanical methods for separating a liquid from a solid are not generally considered drying, although they often precede a drying operation, since it is less expensive and frequently easier to use mechanical methods than to use thermal metnods. [Pg.1174]

In this subsection, basic design theory for preliminary sizing and specifying equipment are reviewed. Some sample design calculations are included. References cited at the end of tlie chapter can be consulted for more detailed information and design methods. For solid-liquid separation methods, the reader should refer to Liquid Filtration, 2" edition, by N. P. Cheremisinoff, Butterworth-Heinemarui Publishers (1998). [Pg.370]

For derivations that are more complex and a more detailed description of solid-liquid separation applications, the reader is referred to specialist texts e.g. Coulson and Richardson (1991), Purchas (1981), Purchas and Wakeman (1986), Matteson and Orr (1987), Wakeman (1990a,b), Cheremisinoff (1998), Sinnott (1999) and Svarovsky (2000). Several types of drier and associated drying theory are considered in detail in a number of texts, including Nonhebel and Moss (1971), Keey (1972, 1978, 1991), Masters (1985) and Coulson and Richardson (1991). [Pg.80]

These operations may sometimes be better kno Ti as mist entrainment, decantation, dust collection, filtration, centrifugation, sedimentation, screening, classification, scrubbing, etc. They often involve handling relatively large quantities of one phase in order to collect or separate the other. Therefore the size of the equipment may become very large. For the sake of space and cost it is important that the equipment be specified and rated to Operate as efficiently as possible [9]. This subject will be limited here to the removal or separation of liquid or solid particles from a vapor or gas carrier stream (1. and 3. above) or separation of solid particles from a liquid (item 4j. Reference [56] is a helpful review. [Pg.224]

Strictly speaking, the term racemic mixture applies only when the mixture of molecules is present as separate solid phases, but in this book we shall use this expression to refer to any equimolar mixture of enantiomeric molecules, liquid, solid, gaseous, or in solution. [Pg.192]

General Reference R Krishnaswamy and P. Klinkowski, Electrokinetics and Electrofiltration, in Advances in Solid-Liquid Separation, H. S. Murali-dhara (ed.), Battelle Press, Columbus, OH, 1986. [Pg.21]

An analyte may be present in one material phase (either a solid or liquid sample) and, as part of the sample preparation scheme, be required to be separated from the sample matrix and placed in another phase (a liquid). Such a separation is known as an extraction—the analyte is extracted from the initial phase by the liquid and is deposited (dissolved) in the liquid, while other sample components are insoluble and remain in the initial phase. If the sample is a solid, the extraction is referred to as a solid-liquid extraction. In other words, a solid sample is placed in the same container as the liquid and the analyte is separated from the solid because it dissolves in the liquid while other sample components do not. [Pg.24]

Thermal uniformity in the cold zone was found to be from 0.01 to 0.02 °C, and that in the hot zone was found to be better than + 0.5 °C vertically and + 0.1 °C horizontally. Thermal gradients near the solid-liquid interface were achieved in excess of 30 °C cm " in the crystal region and up to 20 °C cm" in the melt. The growth of crystals was performed in a sealed transparent silica ampoule, which has two rooms for As source and GaAs polycrystalline, respectively, separated by a quartz diffusion barrier. For details of the growth process the reader is referred to Ref. 43. In this experiment the As source temperature T. was systematically reduced by 2 °C at 3 h intervals from 620 °C to 614 °C. [Pg.243]

An example of a solid-liquid phase separation - often referred to as a mechanical separation - is filtration. Filters are also used in gas-sohd separation. Filtration may be used to recover liquid or sohd or both. Also, it can be used in waste-treatment processes. Walas [6] describes many solid-hquid separators, but we will only consider the rotary-drum filter. Reliable sizing of rotary-drum filters requires bench and pilot-scale testing with the slurry. Nevertheless, a model of the filtering process will show some of the physical factors that influence filtration and will give a preliminary estimate of the filter size in those cases where data are available. [Pg.314]

As noted earlier, some of the steps that precede the insertion of the treated sample into the instrument for measurement (e.g. dissolution, clean-up, preconcentration, individual separation, derivatization) can have a critical influence on accuracy and precision depending on the particular step. All analytical processes include a sample preparation step which is a function of a number of factors such as the physical state of the sample, the nature of the sample matrix and analytes or the type of detector, for example. The first distinction therefore refers to the nature of the sample solid, liquid or gas. Solid samples are the most difficult to process as most analytical instruments cannot handle them. Therefore, the first operation in solid sample preparation involves transferring the target analytes to a liquid phase. This can be carried out in various ways including total dissolution of the test sample or partial dissolution or separation of a portion thereof. The different choices, which can be assisted by ultrasound, are depicted in Fig. 2.2, and discussed in the following sections. [Pg.38]

If a saturated solution is cooled, the solubility of the solute generally decreases in order for the cooled solution to return to equilibrium, some solute must come out of solution as solid crystals. The crystallization rate may be slow, however, so that a metastable condition can exist in which the concentration of the solute is higher than the equilibrium value at the solution temperature. Under such conditions, the solution is said to be supersaturated and the difference between actual and equilibrium concentrations is referred to as supersaturation. Ail problems involving solid-liquid separations in this text assume that equilibrium exists between the solid and liquid phases, so that supersaturation need not be considered. [Pg.264]

Good descriptions of the production of aluminum can be found in the literature (Grjotheim etal. [7], Grjotheim and Welch [8], Grjotheim and Kvande [9], Burkin [10], and Peterson and Miller [11]). Referring to Fig. 2 [12], the first step in the production of aluminum from its ore ( bauxite ) is the selective leaching of the aluminum content (present as oxides/hy dr oxides of aluminum) into hot concentrated NaOH solution to form sodium aluminate in solution. After solution purification, very pure aluminum hydroxide is precipitated from the cooled, diluted solution by addition of seed particles to nucleate the precipitation. After solid-liquid separation the alumina is dried and calcined. These operations are the heart of the Bayer process and the alumina produced is shipped to a smelter where the alumina, dissolved in a molten salt electrolyte, is electrolyt-ically reduced to liquid aluminum in Hall- Heroult cells. This liquid aluminum,... [Pg.225]

However, in normal phase adsorption systems (or liquid-solid chromatography) the interaction of the mobile phase solvent with the solute is often less Important than the competing Interactions of the mobile phase solvent and the solute with the stationary phase adsorption sites. Solute retention is based upon a displacement mechanism. Multicomponent mobile phases and their combination to optimize separations in liquid-solid chromatography have been studied in detail (31-35). Here, solvents are classified as to their interaction with the adsorption surface (Reference 32, in particular) ... [Pg.149]


See other pages where Separation solid-liquid references is mentioned: [Pg.2766]    [Pg.334]    [Pg.524]    [Pg.534]    [Pg.161]    [Pg.461]    [Pg.34]    [Pg.491]    [Pg.515]    [Pg.470]    [Pg.214]    [Pg.636]    [Pg.158]    [Pg.87]    [Pg.252]    [Pg.214]    [Pg.334]    [Pg.142]    [Pg.1498]    [Pg.625]    [Pg.40]    [Pg.269]    [Pg.1258]    [Pg.2066]    [Pg.86]    [Pg.2049]    [Pg.2062]    [Pg.2078]    [Pg.258]    [Pg.205]    [Pg.114]   
See also in sourсe #XX -- [ Pg.138 ]

See also in sourсe #XX -- [ Pg.138 ]




SEARCH



Liquid reference

Liquid-solid separators

References separator

Solid-liquid separation

Solids separating

Solids separation

© 2024 chempedia.info