Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Separation processes, interaction with

Knowledge of chemical composition, Boerhaave stated here, was acquired first through the experimental separation of the parts. Second, the chemical parts had to be separated as they originally were, without being simultaneously transformed. Third, the original substance also had to be reproduced firom the separated parts in order to confirm that the parts had not been altered during the process of separation. Such alterations took place easily, as the fire or reagents used in chemical separation sometimes interacted with the parts and thus transformed them into new substances. [Pg.116]

These constants are dependent upon pressure, temperature and also the composition of the hydrocarbon fluid, as the various components within the system will interact with each other. K values can be found in gas engineering data books. The basic separation process is similar for oil and gas production, though the relative amounts of each phase differ. [Pg.243]

Other Interaction Processes. The selectivity of flotation reagents in a pulp and their functions depend on their interactions with the mineral phases to be separated, but other physicochemical and hydrodynamic processes also play roles. AH adsorption—desorption phenomena occur at the sohd—hquid interfacial region. Surface processes that influence such adsorptions include activation and depression. Activators and depressants are auxiUary reagents. [Pg.49]

In the analytical chromatographic process, mixtures are separated either as individual components or as classes of similar materials. The mixture to be separated is first placed in solution, then transferred to the mobile phase to move through the chromatographic system. In some cases, irreversible interaction with the column leaves material permanently attached to the stationary phase. This process has two effects because the material is permanently attached to the stationary phase, it is never detected as leaving the column and the analysis of the mixture is incomplete additionally, the adsorption of material on the stationary phase alters the abiHty of that phase to be used in future experiments. Thus it is extremely important to determine the ultimate fate of known materials when used in a chromatographic system and to develop a feeling for the kinds of materials in an unknown mixture before use of a chromatograph. [Pg.105]

Column Tubing. The chromatographic column is contained in a tubing, the composition of which may have a dramatic effect on the separation process, because the sample components may also interact with the walls of the tube. Some of the materials used for columns are... [Pg.107]

Three examples of simple multivariable control problems are shown in Fig. 8-40. The in-line blending system blends pure components A and B to produce a product stream with flow rate w and mass fraction of A, x. Adjusting either inlet flow rate or Wg affects both of the controlled variables andi. For the pH neutrahzation process in Figure 8-40(Z ), liquid level h and the pH of the exit stream are to be controlled by adjusting the acid and base flow rates and w>b. Each of the manipulated variables affects both of the controlled variables. Thus, both the blending system and the pH neutralization process are said to exhibit strong process interacHons. In contrast, the process interactions for the gas-liquid separator in Fig. 8-40(c) are not as strong because one manipulated variable, liquid flow rate L, has only a small and indirec t effect on one controlled variable, pressure P. [Pg.736]

Cells make use of many different types of membranes. All cells have a cytoplasmic membrane, or plasma membrane, that functions (in part) to separate the cytoplasm from the surroundings. In the early days of biochemistry, the plasma membrane was not accorded many functions other than this one of partition. We now know that the plasma membrane is also responsible for (1) the exclusion of certain toxic ions and molecules from the cell, (2) the accumulation of cell nutrients, and (3) energy transduction. It functions in (4) cell locomotion, (5) reproduction, (6) signal transduction processes, and (7) interactions with molecules or other cells in the vicinity. [Pg.260]

The support materials for the stationary phase can be relatively inactive supports, e.g. glass beads, or adsorbents similar to those used in LSC. It is important, however, that the support surface should not interact with the solute, as this can result in a mixed mechanism (partition and adsorption) rather than true partition. This complicates the chromatographic process and may give non-reproducible separations. For this reason, high loadings of liquid phase are required to cover the active sites when using high surface area porous adsorbents. [Pg.218]

During the first trials with synthetic separators around 1940 it had already been observed that some of the desired battery characteristics were affected detrimentally. The cold crank performance decreased and there was a tendency towards increased sulfation and thus shorter battery life. In extended test series, these effects could be traced back to the complete lack of wooden lignin, which had leached from the wooden veneer and interacted with the crystallization process at the negative electrode. By a dedicated addition of lignin sulfonates — so called organic expanders -— to the negative mass, not only were these disadvantages removed, but an improvement in performance was even achieved. [Pg.252]

A more accurate analysis of this problem incorporating renormalization results, is possible [86], but the essential result is the same, namely that stretched, tethered chains interact less strongly with one another than the same chains in bulk. The appropriate comparison is with a bulk-like system of chains in a brush confined by an impenetrable wall a distance RF (the Flory radius of gyration) from the tethering surface. These confined chains, which are incapable of stretching, assume configurations similar to those of free chains. However, the volume fraction here is q> = N(a/d)2 RF N2/5(a/d)5/3, as opposed to cp = N(a/d)2 L (a/d)4/3 in the unconfined, tethered layer. Consequently, the chain-chain interaction parameter becomes x ab N3/2(a/d)5/2 %ab- Thus, tethered chains tend to mix, or at least resist phase separation, more readily than their bulk counterparts because chain stretching lowers the effective concentration within the layer. The effective interaction parameters can be used in further analysis of phase separation processes... [Pg.54]

Now. comparing this to Eq. (4-131). one sees that they appear different. If one di ides through the second equation by k4/k2, the algebraic forms can be made to be identical. The lesson is this The kinetics alone offers no distinction separately identifying the substrate that interacts with the catalyst and incorporating the chemical sense of the process will, one hopes, provide the resolution. [Pg.94]

Chemical forces are normally irreversible in nature (at least in chromatography) and thus, the distribution coefficient of the solute with respect to the stationary phase is infinite or close to infinite. Affinity chromatography is an example of the use of chemical forces in a separation process. The stationary phase is formed in such a manner that it will chemically interact with one unique solute present in the sample and thus, exclusively extract it from the other materials... [Pg.23]

This precipitation process can be carried out rather cleverly on the surface of a reverse phase. If the protein solution is brought into contact with a reversed phase, and the protein has dispersive groups that allow dispersive interactions with the bonded phase, a layer of protein will be adsorbed onto the surface. This is similar to the adsorption of a long chain alcohol on the surface of a reverse phase according to the Langmuir Adsorption Isotherm which has been discussed in an earlier chapter. Now the surface will be covered by a relatively small amount of protein. If, however, the salt concentration is now increased, then the protein already on the surface acts as deposition or seeding sites for the rest of the protein. Removal of the reverse phase will separate the protein from the bulk matrix and the original protein can be recovered from the reverse phase by a separate procedure. [Pg.200]

The separation was carried out on a bonded phase LC-PCN column carrying cyanopropylmethyl moieties on the surface. Thus, in contrast to the extraction process, which appears to be based on ionic interactions with the weak ion exchange material, the LC separation appears to be based on a mixture of interactions. There will be dispersive interactions of the drugs with the hydrocarbon chains of the bonded moiety and also weakly polar interactions with the cyano group. It is seen that the extraction procedures are very efficient and all the tricyclic antidepressant drugs are eluted discretely. [Pg.205]


See other pages where Separation processes, interaction with is mentioned: [Pg.125]    [Pg.276]    [Pg.15]    [Pg.81]    [Pg.11]    [Pg.135]    [Pg.110]    [Pg.703]    [Pg.191]    [Pg.18]    [Pg.164]    [Pg.146]    [Pg.149]    [Pg.539]    [Pg.332]    [Pg.447]    [Pg.411]    [Pg.367]    [Pg.155]    [Pg.347]    [Pg.502]    [Pg.2146]    [Pg.2194]    [Pg.99]    [Pg.529]    [Pg.13]    [Pg.427]    [Pg.784]    [Pg.30]    [Pg.84]    [Pg.165]    [Pg.204]    [Pg.817]    [Pg.175]    [Pg.90]   


SEARCH



Coagulation-flocculation, interaction with separation processes

Process interactions

Processing interaction

Processing separation

Separation processes

© 2024 chempedia.info