Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Self overview

A logical division is made for the adsorption of nonelectrolytes according to whether they are in dilute or concentrated solution. In dilute solutions, the treatment is very similar to that for gas adsorption, whereas in concentrated binary mixtures the role of the solvent becomes more explicit. An important class of adsorbed materials, self-assembling monolayers, are briefly reviewed along with an overview of the essential features of polymer adsorption. The adsorption of electrolytes is treated briefly, mainly in terms of the exchange of components in an electrical double layer. [Pg.390]

This book is conceived as a textbook for application in teaching and self-learning of chemoinfoimatics. We aim to present a comprehensive overview of the field of che-moinformatics for students, teachers, and scientists from other areas of chemistry, from biology, informatics, and medicine. Those interested in a more in-depth presentation and analysis of the topics in this Textbook are referred to an accompanying set of four volumes. [Pg.11]

The safety principles and criteria used ia the design and constmction of the faciUties which implement the nuclear fuel cycle are analogous to those which govern the nuclear power plant. The principles of multiple barriers and defense-ia-depth are appHed with rigorous self-checking and regulatory overview (17,34). However, the operational and regulatory experience is more limited. [Pg.241]

It will be clear that L-B films are intrinsically linked to self-assembly of molecules, and this has been recognised in the title of a recent overview book (Ulman 1991), An Introduction to Ultra thin Organic Films from Langnmir-Blodgett to Self-Assembly An Overview. [Pg.436]

Ulman, A. (1991) An Introduction to Ultrathin Organic Films from Langmuir-Blodgett to Self-A. i. iemhly An Overview (Academic Press, Boston). [Pg.461]

To complete this overview of chain models, we mention the dimer models, which represent the amphiphiles by just two units attached to each other [153-157]. They have been used to study curved bilayers [153], the kinetics of phase separation between oil and water in the presence of surfactants [155], and some aspects of self-assembled micelles [154,157] (see below). [Pg.651]

The developmental histories of artificial life and cellular automata have been intertwined ever since von Neumann hrst showed how to construct a self-reproducing automaton ([voiiN66] see section 11.7). A brief historical overview of artificial life appears in chapter 11. [Pg.610]

Amphipilic polypeptides that are synthesized with appropriate ratios of hydrophilic to hydrophobic blocks can form ordered vesicular shapes. Although many polypeptides can self-assemble into vesicles when simply dissolved in the correct solvent, others require more processing steps. This section provides an overview of the techniques that have been developed to process various polypeptide and polypeptide hybrid systems into vesicles. [Pg.124]

Methods for the design of size- and even shape-controlled [186,190,191,370-372] metallic nanoparticles have reached a rather mature stadium thanks to the contributions of the pioneer groups of the last 25 years. Applications in a number of fields of practical Nanotechnology are now moving fast into the focus of R D [203,373]. For an overview on the potential application of metal nanoparticles in the rapidly growing fields of quantum dots, self-assembly, and electrical properties, the reader is advised to consult recently published specialist review articles, e.g.. Refs. [160,281] and book chapters (cf Chapters 2, 4, and 5 in Ref. [60]). In the following three sub-sections the authors restrict themselves to a brief summary of a few subjects of current practical interest in fields with which they are most familiar. [Pg.37]

We have planned every chapter to be self-contained. Each commences with a general overview, before the core material is presented in depth this is followed by a list of questions that should prove useful for both students and their lecturers. Finally, there are several key articles, followed by a list of further references. Many of the chapters in this book have been tested out on our students. Not only did they report that the chapters were all excellent (in feedback sessions that were obviously not blind ) they also informed us that they particularly liked this reference format. They found it useful when writing essays, preparing projects and, most importantly, when cramming for exams. [Pg.334]

Abstract This chapter gives an overview of the research on the self-assembly of amorphous block copolymers at different levels of hierarchy. Besides the influence of composition and topology on the morphologies of block copolymers with linear, cyclic and branched topologies blends of block copolymers with low molecular weight components, other polymers or block copolymers and nanoparticles will also be presented. [Pg.139]

In this sub-chapter we intend to give an overview of household appliances using the different gas sensor principles mentioned in the previous chapters. The appliances can be divided into two categories gas sensors for safety and for comfort. Natural gas and CO-alarm systems for example are safety-relevant whereas air quality measurement, control of self-cleaning of ovens etc. are more or less a matter of comfort or energy-saving. [Pg.150]

Figure 5.10 Schematic overview of self-assembly process of high-axial-ratio nanostructures using bolaamphiphilic monomers. Arrows indicate hydrogen bond functionalities. Reprinted from Ref. 53 with permission of Wiley-VCH. Figure 5.10 Schematic overview of self-assembly process of high-axial-ratio nanostructures using bolaamphiphilic monomers. Arrows indicate hydrogen bond functionalities. Reprinted from Ref. 53 with permission of Wiley-VCH.
De Haven [127] gives an overview of the results of accelerating rate calorimeter (ARC) experiments. The ARC was described in Section 2.3.2.3. As mentioned in the previous description, care must be taken in scale-up of results from experiments with relatively high phi-factors. For direct simulation of plant operating conditions, a phi-factor of 1.0 to 1.05 is required. As stated in [127], a decrease in the phi-factor from 2.0 to 1.0 increases the adiabatic temperature rise by a factor of 2, but the maximum self-heat rate increases by a factor of 20. Later in Chapter 3 (Section 3.3.4.6), an example of scale-up of ARC results is given. [Pg.137]

Figure 4 Overview of several theoretical predictions for the SE Brueckner-Hartree-Fock (continuous choice) with Reid93 potential (circles), self-consistent Green function theory with Reid93 potential (full line), variational calculation from [9] with Argonne Avl4 potential (dashed line), DBHF calculation from [16] (triangles), relativistic mean-field model from [22] (squares), effective field theory from [23] (dash-dotted fine). Figure 4 Overview of several theoretical predictions for the SE Brueckner-Hartree-Fock (continuous choice) with Reid93 potential (circles), self-consistent Green function theory with Reid93 potential (full line), variational calculation from [9] with Argonne Avl4 potential (dashed line), DBHF calculation from [16] (triangles), relativistic mean-field model from [22] (squares), effective field theory from [23] (dash-dotted fine).
This article is an overview of the novel technology of self-reinforced LCPs with polyesters, poly(ethylene terephthalate) (PET) and poly(ethylene naphtha-late) (PEN) [10-13, 21, 23], LCP/polyester blends in a polyester matrix form in situ fibrils which improve the mechanical properties. LCPs have an inherently low melt viscosity, and provide LCP/polyester blends that effectively lower the melt viscosity during melt spinning [24], and fast injection-molding cycles. The miscibility between the LCP and polyesters can be controlled by the degree of transesterification [25] in the reactive extrusion step, and fibril formation in LCP-reinforced polyester fibers has been studied. [Pg.666]

This section provides a comprehensive overview of recent efforts in physical theory, molecular modeling, and performance modeling of CLs in PEFCs. Our major focus will be on state-of-the-art CLs that contain Pt nanoparticle electrocatalysts, a porous carbonaceous substrate, and an embedded network of interconnected ionomer domains as the main constituents. The section starts with a general discussion of structure and processes in catalyst layers and how they transpire in the evaluation of performance. Thereafter, aspects related to self-organization phenomena in catalyst layer inks during fabrication will be discussed. These phenomena determine the effective properties for transport and electrocatalytic activity. Finally, physical models of catalyst layer operation will be reviewed that relate structure, processes, and operating conditions to performance. [Pg.403]

A successful theoretical description of polymer brushes has now been established, explaining the morphology and most of the brush behavior, based on scaling laws as developed by Alexander [180] and de Gennes [181]. More sophisticated theoretical models (self-consistent field methods [182], statistical mechanical models [183], numerical simulations [184] and recently developed approaches [185]) refined the view of brush-type systems and broadened the application of the theoretical models to more complex systems, although basically confirming the original predictions [186]. A comprehensive overview of theoretical models and experimental evidence of polymer bmshes was recently compiled by Zhao and Brittain [187] and a more detailed survey by Netz and Adehnann [188]. [Pg.400]


See other pages where Self overview is mentioned: [Pg.238]    [Pg.428]    [Pg.637]    [Pg.324]    [Pg.1]    [Pg.322]    [Pg.18]    [Pg.146]    [Pg.506]    [Pg.335]    [Pg.233]    [Pg.329]    [Pg.13]    [Pg.125]    [Pg.41]    [Pg.109]    [Pg.246]    [Pg.165]    [Pg.193]    [Pg.862]    [Pg.81]    [Pg.126]    [Pg.303]    [Pg.55]    [Pg.70]    [Pg.197]    [Pg.387]    [Pg.1]    [Pg.207]    [Pg.284]    [Pg.377]   
See also in sourсe #XX -- [ Pg.1371 ]




SEARCH



Self-assembled monolayers overview

Self-consistent field method overview

© 2024 chempedia.info