Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Self microscopic

The field ion microscope (FIM) has been used to monitor surface self-diflfiision in real time. In the FIM, a sharp, crystalline tip is placed in a large electric field in a chamber filled with Fie gas [14]. At the tip. Fie ions are fonned, and then accelerated away from the tip. The angular distribution of the Fie ions provides a picture of the atoms at the tip with atomic resolution. In these images, it has been possible to monitor the diflfiision of a single adatom on a surface in real time [15]. The limitations of FIM, however, include its applicability only to metals, and the fact that the surfaces are limited to those that exist on a sharp tip, i.e. difhision along a large... [Pg.292]

Marrian C R K, Perkins F K, Brandow S L, Koloski T S, Dobisz E A and Calvert J M 1994 Low voltage electron beam lithography in self-assembled ultrathin films with the scanning tunneling microscope Appi. Rhys. Lett. 64 390... [Pg.319]

Nuzzo R G, Dubois L FI and Allara D L 1990 Fundamental-studies of microscopic wetting on organic-surfaces. 1. formation and structural characterization of a self-consistent series of polyfunctional organic monolayers J. Am. Chem. Soc. 112 558-69... [Pg.2636]

Theliterature contains many publications on self-made magnetic EEL spectrometers [2.182-2.196], and such systems have also been commercially available for many years. Several companies have developed such spectrometers, but the 90° magnetic prisms of the firm Gatan (parallel-detection EELS model 666 and the new Enfma model) are the only ones recently offered for TEM/STEM. Because they can easily be attached to a transmission microscope below its camera chamber, they are widely used. [Pg.53]

We close these introductory remarks with a few comments on the methods which are actually used to study these models. They will for the most part be mentioned only very briefly. In the rest of this chapter, we shall focus mainly on computer simulations. Even those will not be explained in detail, for the simple reason that the models are too different and the simulation methods too many. Rather, we refer the reader to the available textbooks on simulation methods, e.g.. Ref. 32-35, and discuss only a few technical aspects here. In the case of atomistically realistic models, simulations are indeed the only possible way to approach these systems. Idealized microscopic models have usually been explored extensively by mean field methods. Even those can become quite involved for complex models, especially for chain models. One particularly popular and successful method to deal with chain molecules has been the self-consistent field theory. In a nutshell, it treats chains as random walks in a position-dependent chemical potential, which depends in turn on the conformational distributions of the chains in... [Pg.639]

Nonmuscle cells perform mechanical work, including self-propulsion, morphogenesis, cleavage, endocytosis, exocytosis, intracellular transport, and changing cell shape. These cellular functions are carried out by an extensive intracellular network of filamentous structures constimting the cytoskeleton. The cell cytoplasm is not a sac of fluid, as once thought. Essentially all eukaryotic cells contain three types of filamentous struc-mres actin filaments (7-9.5 nm in diameter also known as microfilaments), microtubules (25 nm), and intermediate filaments (10-12 nm). Each type of filament can be distinguished biochemically and by the electron microscope. [Pg.576]

Self-organization seems to be counterintuitive, since the order that is generated challenges the paradigm of increasing disorder based on the second law of thermodynamics. In statistical thermodynamics, entropy is the number of possible microstates for a macroscopic state. Since, in an ordered state, the number of possible microstates is smaller than for a more disordered state, it follows that a self-organized system has a lower entropy. However, the two need not contradict each other it is possible to reduce the entropy in a part of a system while it increases in another. A few of the system s macroscopic degrees of freedom can become more ordered at the expense of microscopic disorder. This is valid even for isolated, closed systems. Eurthermore, in an open system, the entropy production can be transferred to the environment, so that here even the overall entropy in the entire system can be reduced. [Pg.189]

As has been shown above, oscillatory electrodeposition is interesting from the point of view of the production of micro- and nanostructured materials. However, in situ observation of the dynamic change of the deposits had been limited to the micrometer scale by use of an optical microscope. Inspections on the nanometer scale were achieved only by ex situ experiments. Thus, information vdth regard to dynamic nanostructural changes of deposits in the course of the oscillatory growth was insufHcient, although it is very important to understand how the macroscopic ordered structures are formed with their molecular- or nano-components in a self-organized manner. [Pg.252]

Figure 10. (a) Transmission-electron microscope micrograph of a self-assembled chain of 50 nm An particles functionalized with... [Pg.114]

Aqueous micellar solutions, i.e. solutions containing a surfactant at a concentration above its critical micelle concentration, have been studied extensively during the last decade, in part from curiosity, and because of the possibility of providing unique chromatographic selectivity compared to conventional RPC [345-349]. Above the critical micelle concentration individual surfactant molecules self-aggregate to form structures known as micelles which are microscopically... [Pg.209]

While the first STM studies of electrode surfaces were performed with self-built instruments, scanning tunneling microscopes for electrochemical use are nowadays commercially available at a price that hardly justifies the effort of homemade equipment. Nevertheless, new instrumental designs are now and then discussed in the literature, which are still worthwhile to be considered for special applications. There is, however, additional equipment required for the operation of an electrochemical STM, for which homemade designs may be advantageous over commercially available ones and hence is briefly mentioned here in terms of tip preparation and isolation, the electrochemical cell, and vibration damping. [Pg.124]

Successive H-bond urea self-assembly of 4 and sol-gel transcription steps yield preferential conduction pathways within the hybrid membrane materials. Crystallographic, microscopic and transport data confirm the formation of self-organized molecular channels transcribed in solid dense thin-layer membranes. The ionic transport across the organized domains illustrates the power of the supramolecular approach for the design of continual hydrophilic transport devices in hybrid membrane materials by self-organization (Figure 10.8) [42-44]. [Pg.321]


See other pages where Self microscopic is mentioned: [Pg.2363]    [Pg.2363]    [Pg.2802]    [Pg.2885]    [Pg.114]    [Pg.120]    [Pg.509]    [Pg.208]    [Pg.457]    [Pg.637]    [Pg.365]    [Pg.606]    [Pg.609]    [Pg.403]    [Pg.130]    [Pg.463]    [Pg.138]    [Pg.927]    [Pg.42]    [Pg.145]    [Pg.229]    [Pg.315]    [Pg.350]    [Pg.113]    [Pg.7]    [Pg.272]    [Pg.233]    [Pg.234]    [Pg.2]    [Pg.108]    [Pg.364]    [Pg.394]    [Pg.406]    [Pg.39]    [Pg.117]    [Pg.207]    [Pg.56]    [Pg.8]   
See also in sourсe #XX -- [ Pg.2 ]

See also in sourсe #XX -- [ Pg.2 ]




SEARCH



Microscopic self-organisation

Self microscopic techniques

© 2024 chempedia.info