Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surfactants self-association

Certain surface-active compounds [499], when dissolved in water under conditions of saturation, form self-associated aggregates [39,486-488] or micelles [39,485], which can interfere with the determination of the true aqueous solubility and the pKa of the compound. When the compounds are very sparingly soluble in water, additives can be used to enhance the rate of dissolution [494,495], One can consider DMSO used in this sense. However, the presence of these solvents can in some cases interfere with the determination of the true aqueous solubility. If measurements are done in the presence of simple surfactants [500], bile salts [501], complexing agents such as cyclodextrins [489 191,493], or ion-pair-forming counterions [492], extensive considerations need to be applied in attempting to extract the true aqueous solubility from the data. Such corrective measures are described below. [Pg.100]

Although these examples demonstrate the feasibility of using calculated values as estimates, several constraints and assumptions must be kept in mind. First, the diffusant molecules are assumed to be in the dilute range where Henry s law applies. Thus, the diffusant molecules are presumed to be in the unassociated form. Furthermore, it is assumed that other materials, such as surfactants, are not present. Self-association or interaction with other molecules will tend to lower the diffusion coefficient. There may be differences in the diffusion coefficient for molecules in the neutral or charged state, which these equations do not account for. Finally, these equations only relate diffusion to the bulk viscosity. Therefore, they do not apply to polymer solutions where microenvironmental viscosity plays a role in diffusion. [Pg.117]

Self-association, of surfactants, 22 725 Self-baking carbon electrodes, 12 752, 757-758... [Pg.828]

Whenever amphiphilic block copolymer chains are dissolved at a fixed temperature and in a selective solvent for one of the blocks, they self-associate through a closed association process to form micelles similarly to low-MW surfactants. [Pg.82]

Physical properties of the protein structure should be considered in designing strategies to achieve stable formulations because they can often yield clues about which solution environment would be appropriate for stabilization. For example, the insulin molecule is known to self-associate via a nonspecific hydrophobic mechanism66 Stabilizers tested include phenol derivatives, nonionic and ionic surfactants, polypropylene glycol, glycerol, and carbohydrates. The choice of using stabilizers that are amphiphilic in nature to minimize interactions where protein hydrophobic surfaces instigate the instability is founded upon the hydro-phobic effect.19 It has already been mentioned that hydrophobic surfaces prefer... [Pg.347]

Medium-chain alcohols such as 2-butoxyethanol (BE) exist as microaggregates in water which in many respects resemble micellar systems. Mixed micelles can be formed between such alcohols and surfactants. The thermodynamics of the system BE-sodlum decanoate (Na-Dec)-water was studied through direct measurements of volumes (flow denslmetry), enthalpies and heat capacities (flow microcalorimetry). Data are reported as transfer functions. The observed trends are analyzed with a recently published chemical equilibrium model (J. Solution Chem. 13,1,1984). By adjusting the distribution constant and the thermodynamic property of the solute In the mixed micelle. It Is possible to fit nearly quantitatively the transfer of BE from water to aqueous NaDec. The model Is not as successful for the transfert of NaDec from water to aqueous BE at low BE concentrations Indicating self-association of NaDec Induced by BE. The model can be used to evaluate the thermodynamic properties of both components of the mixed micelle. [Pg.79]

Surfactants having an appropriate hydrophobic/hydrophilic balance (sodium bis(-2-ethylhexyl)sufosuccinate, or AOT, for example) undergo concentration-dependent self association in apolar solvents to form reversed or inverted micelles (Fig. 33) [256-262]. Reversed micelles are capable of solubilizing a large number of water molecules (AOT reversed micelles in hexane are able to take up 60 water molecules per surfactant molecule, for example). Reversed-micelle-entrapped water pools are unique they differ significantly from bulk water. At relatively small water-to-surfactant ratios (w = 8-10, where w = [H20]/[Surfactant]), all of the water molecules are strongly bound to the surfactant headgroups. Substrate solubilization in the restricted water pools of reversed micelles results in altered dissociation constants [256, 257, 263-265], reactivities [256, 258, 266], and reaction products [267]. [Pg.50]

In fact, even in pure block copolymer (say, diblock copolymer) solutions the self-association behavior of blocks of each type leads to very useful microstructures (see Fig. 1.7), analogous to association colloids formed by short-chain surfactants. The optical, electrical, and mechanical properties of such composites can be significantly different from those of conventional polymer blends (usually simple spherical dispersions). Conventional blends are formed by quenching processes and result in coarse composites in contrast, the above materials result from equilibrium structures and reversible phase transitions and therefore could lead to smart materials capable of responding to suitable external stimuli. [Pg.18]

Enhancement of the aqueous solubility by surfactants occurs as a result of the dual nature of the surfactant molecule. The term surfactant is derived from the concept of a surface-active agent. Surfactants typically contain discrete hydrophobic and hydrophilic regions, which allow them to orient at polar-nonpolar interfaces, such as water/air interfaces. Once the interface is saturated, th surfactants self-associate to form micelles and other aggregates, whereby their hydrophobic region are minimized and shielded from aqueous contact by their hydrophilic regions. This creates a discrete hydrophobic environment suitable forsolubilization of many hydrophobic compounds (Attwood and Florence, 1983 Li et al., 1999 Zhao et al., 1999). [Pg.256]

There are drug molecules themselves that resemble surfactant molecules with polar and nonpolar regions exhibiting surface-active properties. These drugs can thus self-associate and fornr small aggregates or micelles. Examples of drugs that are surface active include Dexverapamil-HCI (Surakitbanharn etal., 1995), ibuprofen, and benzocaine. [Pg.258]

It has been well documented that surfactants self-associate in aqueous solution to minimize the are of contact between their hydrophobictails and the aqueous solution (Mukerjee, 1979 Tanford, 1980). This phenomenon occurs at a critical concentration of surfactant, the critical micelle concentration or CMC (see Figure 12.4) above where the surfactant molecules exist predominantly as monomeric units and above which micelles exist. The CMC can be measured by a variety of techniques, for example, surface tension, light scattering, osmometry, each of which shows a characteristic break point in the plot of the operative property as a function of concentration. Knowing the CMC of the particular surfactant system and understanding the conditions that may raise or lower that critical concentration is important to the design of a formulation based on micellar solubilization. [Pg.263]

Polymeric micelle formation occurs as a result of two forces. One is an attractive force that leads to the association of molecules while the other one, is a repulsive force, preventing unlimited growth of the micelles to a distinct macroscopic phase (Price, 1983 AstaLeva et al., 1993 Jones and Leroux, 1999). Amphiphilic copolymers form micellar structures through self-association of the insoluble segments when placed in a solvent that is selective for the other monomer (Kataoka et al., 1993 Jones and Leroux, 1999). The process of micellization for amphiphilic copolymers is similar to the process described for conventional hydrocarbon chain-based surfactants as described in the Lrst part of this chapter. [Pg.311]

In spite of these important differences, silicone surfactants share much in common with conventional surfactants. Equilibrium and dynamic surface tension vary with concentration and molecular architecture in similar ways. Silicone surfactants self-associate in solution to form micelles, vesicles and liquid crystal phases. Self-association follows similar patterns as molecular size and shape are varied and silicone surfactants containing polyoxyalkylene groups exhibit a cloud point. HLB values can be calculated for silicone surfactants, although more useful values can be obtained from calculations that take into account the differences between silicone and hydrocarbon species. [Pg.186]

The equation assumed by Ben-Naim and Stillinger for the free energy of miceUization is used to demonstrate that, contrary to their assertion, the critical concentration Catt corresponding to a transition in the shape of the micellar size distribution has a value close to the conventional cmc. The ratio cmc fC is shown to decrease sharply from the large value of 20 obtained by Ben-Naim and Stillinger, to a value of 1.55, if one of the parameters (c) is assigned a physically more plausible value. This value accounts better for the cooperative self-association of the surfactant molecules. [Pg.208]

In this paper, a molecular thermodynamic approach is developed to predict the structural and compositional characteristics of microemulsions. The theory can be applied not only to oil-in-water and water-in-cil droplet-type microemulsions but also to bicontinuous microemulsions. This treatment constitutes an extension of our earlier approaches to micelles, mixed micelles, and solubilization but also takes into account the self-association of alcohol in the oil phase and the excluded-volume interactions among the droplets. Illustrative results are presented for an anionic surfactant (SDS) pentanol cyclohexane water NaCl system. Microstructur al features including the droplet radius, the thickness of the surfactant layer at the interface, the number of molecules of various species in a droplet, the size and composition dispersions of the droplets, and the distribution of the surfactant, oil, alcohol, and water molecules in the various microdomains are calculated. Further, the model allows the identification of the transition from a two-phase droplet-type microemulsion system to a three-phase microemulsion system involving a bicontinuous microemulsion. The persistence length of the bicontinuous microemulsion is also predicted by the model. Finally, the model permits the calculation of the interfacial tension between a microemulsion and the coexisting phase. [Pg.280]

The partitioning of alcohol into the oil, water, and interfacial layer domains of a microemulsion controls whether a two-phase or a three-phase microemulsion system is formed, as well as the microscopic characteristics of the microemulsion phases. F or the typical alcohols used, the amount of alcohol present in the oil domain can be large and comparable to the amount present in the interfacial layer. This is in contrast to the behavior of the surfactant, most of which remains at the interfacial layer and only a negligibly small amount of which are partitioned into the oil and the water domains. Therefore, the accurate accounting of the partitioning of alcohol into the oil domain is a necessary part of any quantitative theory of microemulsions. Such a theory must account for the facts that the alcohol is present in the oil phase as both monomers and aggregates and that the self-association of alcohol in the oil is responsible for its appreciable presence in the oil domain. [Pg.293]

We assume that no surfactant is present in the oil phase, and the main problem to be solved is to determine the relation between the concentrations of alcohol in the water and oil phases. A theory for the partition of the alcohol between oil and water, at chemical equilibrium, which takes into account the self-association of alcohol in the oil phase, is detailed in Appendix C. The equation that relates the mole fraction of the alcohol in the oil phase to the mole fraction of the alcohol in the water phase has the form... [Pg.320]

Self-Association in Hybrid Organic-Inorganic Silicon-Based Material Prepared by Surfactant-Free Sol-Gel of Organosilane... [Pg.233]

The rate equation with strongly acidic catalysts is also second order in silanol and first order in catalyst (75). The mechanism is proposed to proceed via protonation of silanol, followed by an electrophilic attack of the conjugate acid on nonprotonated silanol. The condensation processes outlined in reactions 16a and 16b for sulfonic acids is also an applicable mechanism for the acid catalysis. The condensation polymerization in emulsion catalyzed by dodecylbenzenesulfonic acid is second order in silanol, but the rate has a complex dependence on sulfonic acid concentration (69). This process was most likely a surface catalysis of the oil-water interface and was complicated by self-associations of the catalyst-surfactant. [Pg.87]


See other pages where Surfactants self-association is mentioned: [Pg.149]    [Pg.401]    [Pg.225]    [Pg.257]    [Pg.120]    [Pg.207]    [Pg.581]    [Pg.83]    [Pg.594]    [Pg.299]    [Pg.13]    [Pg.185]    [Pg.191]    [Pg.216]    [Pg.493]    [Pg.385]    [Pg.201]    [Pg.6]    [Pg.141]    [Pg.108]    [Pg.77]    [Pg.194]    [Pg.52]    [Pg.52]    [Pg.59]    [Pg.314]    [Pg.149]    [Pg.3085]    [Pg.201]   
See also in sourсe #XX -- [ Pg.30 ]




SEARCH



Self surfactant

Self-association

© 2024 chempedia.info