Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Selectivities supercritical fluid chromatography

A method which uses supercritical fluid/solid phase extraction/supercritical fluid chromatography (SE/SPE/SEC) has been developed for the analysis of trace constituents in complex matrices (67). By using this technique, extraction and clean-up are accomplished in one step using unmodified SC CO2. This step is monitored by a photodiode-array detector which allows fractionation. Eigure 10.14 shows a schematic representation of the SE/SPE/SEC set-up. This system allowed selective retention of the sample matrices while eluting and depositing the analytes of interest in the cryogenic trap. Application to the analysis of pesticides from lipid sample matrices have been reported. In this case, the lipids were completely separated from the pesticides. [Pg.241]

An on-line supercritical fluid chromatography-capillary gas chromatography (SFC-GC) technique has been demonstrated for the direct transfer of SFC fractions from a packed column SFC system to a GC system. This technique has been applied in the analysis of industrial samples such as aviation fuel (24). This type of coupled technique is sometimes more advantageous than the traditional LC-GC coupled technique since SFC is compatible with GC, because most supercritical fluids decompress into gases at GC conditions and are not detected by flame-ionization detection. The use of solvent evaporation techniques are not necessary. SFC, in the same way as LC, can be used to preseparate a sample into classes of compounds where the individual components can then be analyzed and quantified by GC. The supercritical fluid sample effluent is decompressed through a restrictor directly into a capillary GC injection port. In addition, this technique allows selective or multi-step heart-cutting of various sample peaks as they elute from the supercritical fluid... [Pg.325]

Supercritical fluid chromatography (SFC) provides a means of minimizing the limitations of CSPs developed for FC while retaining the impressive chiral selectivity that has been achieved through the evolution of CSPs during the past two decades [6, 7]. The use of supercritical fluids as eluents for chromatographic separations was... [Pg.299]

Leyendecker D (1988) Selection of conditions for an SFC separation. In Smith RM (ed) Supercritical fluid chromatography. Royal Society of Chemists, London p 53... [Pg.139]

In analytical chemistry there is an ever-increasing demand for rapid, sensitive, low-cost, and selective detection methods. When POCL has been employed as a detection method in combination with separation techniques, it has been shown to meet many of these requirements. Since 1977, when the first application dealing with detection of fluorophores was published [60], numerous articles have appeared in the literature [6-8], However, significant problems are still encountered with derivatization reactions, as outlined earlier. Consequently, improvements in the efficiency of labeling reactions will ultimately lead to significant improvements in the detection of these analytes by the POCL reaction. A promising trend is to apply this sensitive chemistry in other techniques, e.g., in supercritical fluid chromatography [186] and capillary electrophoresis [56-59], An alter-... [Pg.166]

Snyder et al. [253] compared supercritical fluid chromatography with classical sonication procedures and Soxhlet extraction for the determination of selected insecticides in soils and sediments. In this procedure the sample was extracted with carbon dioxide modified with 3% methanol at 350atm and 50°C. An excess of 85% recovery of organochlorine and organophosphorus insecticides was achieved. These included Dichlorvos, Diazinon, (diethyl-2-isopropyl-6-methyl 4-pyrimidinyl phosphorothioate), Ronnel (i.e. Fenchlorphos-0,0 dimethyl-0-2,4,5-trichlorophenyl phosphorothioate), Parathion ethyl, Methiadathion, Tetrachlorovinphos (trans-2-chloro-l-(2,4,5 trichlorophenyl) vinylchlorophenyl-O-methyl phenyl phosphoroamidothioate), Endrin, Endrin aldehyde, pp DDT, Mirex and decachlorobiphenyl. [Pg.270]

Non-ionic surfactants of a commercial washing powder were separated by supercritical fluid chromatography (SFC) and determined by APCI-MS. The constituents were first extracted by supercritical fluid extraction (SFE) using C02 with or without methanol as a modifier. Variations of the conditions resulted in a selective extraction of the analytes, which could be determined without further purification. Six groups of surfactants were observed, four of which are alkyl-polyethoxylates. The presence of APEO could be excluded by identification recording SFC-FTIR (Fourier transform infrared) spectra [31]. [Pg.264]

ViUeneuve, M.S., Anderegg, R.J. Analytical supercritical fluid chromatography using fully automated column and modifier selection valves for the rapid development of chiral separations. J. Chromatogr. A 1998, 826, 217-225. [Pg.210]

To apply a screening approach to proactive method development, analyses of selectivity samples under a variety of mobile phase conditions are conducted on different HPLC columns. HPLC columns should be as orthogonaT as possible and variations in solvent composition should be designed to maximize the probability of selectivity differences. Alternate separation techniques, such as ion exchange chromatography (IC), supercritical fluid chromatography (SFC), or capillary electrophoresis (CE) may also be used to obtain orthogonality. [Pg.153]

Finally, supercritical fluid chromatography, in which a supercritical fluid is used as the mobile phase, was introduced by Klesper [164-166]. SFE directly coupled to SFC provides an extremely powerful analytical tool. The efficient, fast and selective extraction capabilities of supercritical fluids allows quantitative extraction and direct transfer of the selected solutes of interest to be accomplished to the column, often without the need for further sample treatment or cleanup. Extraction selectivity is usually achieved by adjusting the pressure of the supercritical fluid at constant temperature or, less often, by changing the temperature of the supercritical fluid at constant pressure. SFE coupled with packed column SFC has found... [Pg.595]

Zegers BN, Hogenboom AC, Dekkers SEG, et al. 1994a. Packed capillary supercritical fluid chromatography of organophosphorus pesticides Selective detection and application. J Microcol Sep... [Pg.209]

Supercritical fluid chromatography (SFC) is a relatively recently developed chromatographic technique. Because of its ability to deal with compounds that are either polar or of high molecular weight, much attention has recently focused on applications of SFC to the analysis of different analytes using a variety of fluids or fluid mixtures to provide differing solvent capabilities and select vities. As a result there is a large amount of research currently underway both in SFC method development and in hardware development. [Pg.677]

The use of supercritical fluid chromatography for carotene separation has been examined and optimized, especially in regard to temperature, pressure, and organic modifiers in the supercritical fluid (71). With an RP column it was possible to resolve an a-carotene-cis isomer from an all-trans carotene as well as two cis isomers of /3-carotene from an all-trans /3-carotene. As with HPLC, only polymeric C,8 columns were able to resolve the cis isomers of a- and /3-carotene from the all-trans isomers. Supercritical fluid chromatography offers the advantage not only of an efficient separation but also of fast analysis. Indeed, the use of SFC with ODS-based columns for the analysis of carotenoid pigments affords a threefold reduction of analysis time compared to HPLC (72). The elution order of carotenoids and their cis isomers was found to be the same as in RP-HPLC. The selectivity of the system could further be increased by adding modifiers (e.g.,... [Pg.833]


See other pages where Selectivities supercritical fluid chromatography is mentioned: [Pg.1287]    [Pg.609]    [Pg.201]    [Pg.147]    [Pg.284]    [Pg.401]    [Pg.486]    [Pg.231]    [Pg.1663]    [Pg.176]    [Pg.13]    [Pg.567]    [Pg.335]    [Pg.968]    [Pg.214]    [Pg.352]    [Pg.485]    [Pg.427]    [Pg.51]    [Pg.758]    [Pg.172]    [Pg.612]    [Pg.1202]    [Pg.584]    [Pg.513]    [Pg.622]    [Pg.865]    [Pg.201]    [Pg.339]    [Pg.18]    [Pg.147]    [Pg.284]    [Pg.67]   
See also in sourсe #XX -- [ Pg.302 ]

See also in sourсe #XX -- [ Pg.302 ]




SEARCH



Chromatography selection

Selectivity chromatography

Supercritical chromatography

Supercritical fluid chromatography

Supercritical fluid chromatography column selection

Supercritical fluid chromatography enhanced selectivity

Supercritical fluid chromatography mobile phase selection

© 2024 chempedia.info