Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Selected Examples of Use

Mikroreaktorenfur die chemische Synthese, Nachrichten aus der Chemie, May 2000 Chip technology initiates quest for small structures better temperature control on the small scale fast mixing by diffusion several kg productivity per day no novel, but better chemistry perfect control over process parameters corresponding increase in selectivity basic micro-reactor functions selected examples of use micro reactors as routine tools in the laboratory first start-up companies [113],... [Pg.87]

Therefore, the modem mass spectrometrist at first will reflect upon the reactivity of the molecule to be analyzed. The corresponding findings combined with facts about the separation and isolation problems will consequently lead to the technical realization of an analysis. Obviously, this way of utilizing mass spectrometry has induced quite a plethora of new possibilities in analytical work. As it is impossible to report all more recent work in this field, selected examples of using the reactivity of ions and modern scan methods may illustrate trends of modern mass spectrometry. [Pg.74]

It is the aim of this chapter to present in detail a few selected examples of useful organic transformations promoted by Group 4-11 (Ti-Cu) metals rather than to give a comprehensive listing of all possible transformations, as this information is available in several other excellent books. - The protocols are selected to demonstrate the most common oxygenation (addition of O atoms) or oxidation (removal of H atoms) pathways encountered in transition metal-promoted reactions of organic substrates. [Pg.1]

Mutation. For industrial appHcations, mutations are induced by x-rays, uv irradiation or chemicals (iiitrosoguanidine, EMS, MMS, etc). Mutant selections based on amino acid or nucleotide base analogue resistance or treatment with Nystatin or 2-deoxyglucose to select auxotrophs or temperature-sensitive mutations are easily carried out. Examples of useful mutants are strains of Candida membranefaciens, which produce L-threonine Hansenu/a anomala, which produces tryptophan or strains of Candida lipolytica that produce citric acid. An auxotrophic mutant of S. cerevisiae that requires leucine for growth has been produced for use in wine fermentations (see also Wine). This yeast produces only minimal quantities of isoamyl alcohol, a fusel oil fraction derived from leucine by the Ehrlich reaction (10,11). A mutant strain of bakers yeast with cold-sensitive metaboHsm shows increased stabiUty and has been marketed in Japan for use in doughs stored in the refrigerator (12). [Pg.387]

In order to develop the dyes for these fields, characteristics of known dyes have been re-examined, and some anthraquinone dyes have been found usable. One example of use is in thermal-transfer recording where the sublimation properties of disperse dyes are appHed. Anthraquinone compounds have also been found to be usehil dichroic dyes for guest-host Hquid crystal displays when the substituents are properly selected to have high order parameters. These dichroic dyes can be used for polarizer films of LCD systems as well. Anthraquinone derivatives that absorb in the near-infrared region have also been discovered, which may be appHcable in semiconductor laser recording. [Pg.336]

Make a list, based on your own observations, of selected examples of components and structures made from cement and concrete. Discuss how the way in which the materials are used in each example is influenced by the low (and highly variable) tensile strength of cement and concrete. [Pg.215]

The repertoire of a-amino acids used by nature in the biosynthesis of proteins is limited to about 20 structures. Since the diversity of synthetically accessible a-amino acids is enormous, initial studies have been undertaken to investigate the possibilities offered by incorporation of noncoded amino acids into en2ymes. Some selected examples of successful modifications are presented below. [Pg.112]

With the introduction of LT and VT STM, it is now possible to monitor the fundamental steps of chemical reactions, that is, reactant chemisorption, diffusion, and catalytic transformation. A detailed review covering this subject was published by Wintterlin in 2000 [24]. Since then, in situ STM studies have flourished and expanded to the visualization of the reaction pathway and kinetics of surface processes. In the following section, we highlight selected examples of recent progress in using in situ STM for studying fundamental catalytic processes. [Pg.59]

In 1966, Nozaki et al. reported that the decomposition of o-diazo-esters by a copper chiral Schiff base complex in the presence of olefins gave optically active cyclopropanes (Scheme 58).220 221 Following this seminal discovery, Aratani et al. commenced an extensive study of the chiral salicylaldimine ligand and developed highly enantioselective and industrially useful cyclopropanation.222-224 Since then, various complexes have been prepared and applied to asymmetric cyclo-propanation. In this section, however, only selected examples of cyclopropanations using diazo compounds are discussed. For a more detailed discussion of asymmetric cyclopropanation and related reactions, see reviews and books.17-21,225... [Pg.243]

Chang et al. reported a mild tandem intramolecular hydroamination of yne amines to form an endo-adduct intermediate, which reacts with electron-deficient azides to produce cyclic amidines <06JA12366>. Selected examples of an interesting synthetic route to tropene derivatives 165 via a dual hydroamination strategy is shown below. This one-step reaction makes use of a palladium catalyst and takes place by sequential intermolecular hydroamination of cycloheptatriene with aryl, heteroaryl, and primary alkyl amines to generate intermediate 166, followed by transannular intramolecular hydroamination <06JA8134>. [Pg.336]

This section presents selected examples of the use of zeolites and related porous materials for transformations of carbohydrates, that fall beyond the scope of the previous paragraphs. They include the use of zeolites in click chemistry and in a variety of reactions, including the synthesis of anhydro sugars, cyclization, elimination, and addition reactions to the carbonyl group. [Pg.76]

A variety of experimental therapeutic strategies have been tested in mutant SOD1 mice. Lines of mutant SOD1 mice have been used for pharmacological and genetic therapeutic trials [10,21,22,25,137-139]. Selected examples of these approaches are briefly described below. [Pg.737]

With regard to application in the pharmaceutical industry, palladium-catalyzed coupling reactions offer the opportunity of shorter and more selective routes for a number of currently marketed and future drugs. Therefore, it is not surprising that since the early 1990s more and more palladium-catalyzed reactions are transferred from academic protocols to the industrial context (Beller et al. 2001 Beller and Zapf 2002 de Vries 2001). Selected examples of processes that are used nowadays or have been used in the pharmaceutical industry are shown in Scheme 3. In order to see more realizations of this type of chemistry, more active and productive palladium catalysts have to be developed because of the high price of palladium and most often the ligand system. [Pg.104]

Table 5. Selected examples of macrocycles formed by RCM using 1 as the catalyst Product (Yield) Reference Product (Yield) Ref. [Pg.66]

The d-lactone (Scheme 38.11) can be efficiently obtained by the telomerization of butadiene and C02. Its biphasic hydrogenation with an in-situ-prepared Rh/ mtppts catalyst yields 2-ethylidene-6-heptenoic acid (and its isomers) [136]. Note, that the catalyst is selective for the hydrogenolysis of the lactone in the presence of two olefmic double bonds this is probably due to the relatively large [P] [Rh] ratio (10 1) which is known to inhibit C = C hydrogenations with [RhCl(wtppms)3]. The mixture of heptenoic acids can further be hydrogenated on Pd/C and Mo/Rh catalysts to 2-ethylheptanol which finds several applications in lubricants, solvents, and plasticizers. This is one of the rare examples of using C02 as a Cl building block in a transition metal-catalyzed synthetic process. [Pg.1352]

The first synthetically useful reaction of titanium complexes of type 4, leading to the formation of two new carbon—carbon bonds, was developed by Kulinkovich et al. [55]. They found that treatment of a carboxylic acid ester with a mixture of one equivalent of titanium tetraisopropoxide and an excess of ethylmagnesium bromide at —78 to —40 °C affords 1-alkylcyclopropanols 9 in good to excellent yields (Scheme 11.2) [55,56], This efficient transformation can also be carried out with sub-stoichiometric amounts of Ti(OiPr)4 (5—10 mol%) [57,58]. In this case, an ethereal solution of two equivalents of EtMgBr is added at room temperature to a solution containing the ester and Ti(OiPr)4. Selected examples of this transformation are presented in Table 11.1 (for more examples, see ref. [26a]). [Pg.392]

FIGURE 5.15. Example of use of screens in selecting drag candidates for development. [Pg.166]

The present chapter focuses on process options integrated in a biorefinery scheme that should yield bio-products at a more competitive market price and quality. Although bioconversions are essential steps to derive the platform molecules that are used subsequently for catalytic transformations, only chemo-catalytic process will be examined. Selected examples of catalytic conversions illustrating different process options will be given. [Pg.55]

Nucleophilic Reactions.—Attack on Saturated Carbon. Selected examples of the Arbusov reaction include phosphorylation of the chloroacetophenones (1) to give phosphonates, which cyclized to (2) in the presence of acid chlorides,1 formation of the azodiphosphonate (3) from 2,2 -dichloro-2,2 -azopropane,2 3 and the reaction of 2-chloro-3,4-dihydro-3-oxo-2//-l,4-benzothiazine (4) with triethyl phosphite to give the 2-phosphonate (5), which is used as an olefin synthon.8 Bis(trimethylsilyl) trimethylsiloxymethylphosphonite (6) has been synthesized by silylation of hydroxy-methylphosphonous acid, and, as expected, undergoes a normal Arbusov reaction with alkyl halides to give the phosphonates (7).4 This series of reactions, followed by... [Pg.84]


See other pages where Selected Examples of Use is mentioned: [Pg.303]    [Pg.303]    [Pg.50]    [Pg.51]    [Pg.53]    [Pg.55]    [Pg.57]    [Pg.59]    [Pg.303]    [Pg.303]    [Pg.50]    [Pg.51]    [Pg.53]    [Pg.55]    [Pg.57]    [Pg.59]    [Pg.2109]    [Pg.141]    [Pg.70]    [Pg.5]    [Pg.328]    [Pg.97]    [Pg.498]    [Pg.159]    [Pg.502]    [Pg.1095]    [Pg.242]    [Pg.473]    [Pg.386]    [Pg.53]    [Pg.213]    [Pg.364]    [Pg.54]    [Pg.355]    [Pg.38]    [Pg.447]    [Pg.99]   


SEARCH



Selected Examples

Use of Organoaluminum Species Supported by Chelating Ligands Selected Examples

© 2024 chempedia.info