Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Seawater state

Anodic-stripping voltaimnetry (ASV) is used for the analysis of cations in solution, particularly to detemiine trace heavy metals. It involves pre-concentrating the metals at the electrode surface by reducmg the dissolved metal species in the sample to the zero oxidation state, where they tend to fomi amalgams with Hg. Subsequently, the potential is swept anodically resulting in the dissolution of tire metal species back into solution at their respective fomial potential values. The detemiination step often utilizes a square-wave scan (SWASV), since it increases the rapidity of tlie analysis, avoiding interference from oxygen in solution, and improves the sensitivity. This teclmique has been shown to enable the simultaneous detemiination of four to six trace metals at concentrations down to fractional parts per billion and has found widespread use in seawater analysis. [Pg.1932]

Nickel—Copper. In the soHd state, nickel and copper form a continuous soHd solution. The nickel-rich, nickel—copper alloys are characterized by a good compromise of strength and ductihty and are resistant to corrosion and stress corrosion ia many environments, ia particular water and seawater, nonoxidizing acids, neutral and alkaline salts, and alkaUes. These alloys are weldable and are characterized by elevated and high temperature mechanical properties for certain appHcations. The copper content ia these alloys also easure improved thermal coaductivity for heat exchange. MONEL alloy 400 is a typical nickel-rich, nickel—copper alloy ia which the nickel content is ca 66 wt %. MONEL alloy K-500 is essentially alloy 400 with small additions of aluminum and titanium. Aging of alloy K-500 results in very fine y -precipitates and increased strength (see also Copper alloys). [Pg.6]

Sodium is not found ia the free state ia nature because of its high chemical reactivity. It occurs naturally as a component of many complex minerals and of such simple ones as sodium chloride, sodium carbonate, sodium sulfate, sodium borate, and sodium nitrate. Soluble sodium salts are found ia seawater, mineral spriags, and salt lakes. Principal U.S. commercial deposits of sodium salts are the Great Salt Lake Seades Lake and the rock salt beds of the Gulf Coast, Virginia, New York, and Michigan (see Chemicals frombrine). Sodium-23 is the only naturally occurring isotope. The six artificial radioisotopes (qv) are Hsted ia Table 1 (see Sodium compounds). [Pg.161]

Chlorine. Chlorine, the material used to make PVC, is the 20th most common element on earth, found virtually everywhere, in rocks, oceans, plants, animals, and human bodies. It is also essential to human life. Eree chlorine is produced geothermally within the earth, and occasionally finds its way to the earth s surface in its elemental state. More usually, however, it reacts with water vapor to form hydrochloric acid. Hydrochloric acid reacts quickly with other elements and compounds, forming stable compounds (usually chloride) such as sodium chloride (common salt), magnesium chloride, and potassium chloride, all found in large quantities in seawater. [Pg.508]

Occurrence. Iodine [7553-56-2] is widely distributed in the Hthosphere at low concentrations (about 0.3 ppm) (32). It is present in seawater at a concentration of 0.05 ppm (33). Certain marine plants concentrate iodine to higher levels than occur in the sea brine these plants have been used for their iodine content. A significant source of iodine is caUche deposits of the Atacama Desert, Chile. About 40% of the free world s iodine was produced in Japan from natural gas wells (34), but production from Atacama Desert caUche deposits is relatively inexpensive and on the increase. By 1992, Chile was the primary world producer. In the United States, underground brine is the sole commercial source of iodine (35). Such brine can be found in the northern Oklahoma oil fields originating in the Mississippian geological system (see Iodine and iodine compounds). [Pg.411]

In oxygenated seawater, uranium is thermodynamically predicted to be present in a hexavalent (-b 6) oxidation state, but it can also exist as the tetravalent U(IV) if conditions are sufficiently reducing. Reduced uranium in the +A oxidation state is highly insoluble or particle reactive. In contrast, U(VI) is readily soluble due to the rapid formation of stable inorganic carbonate complexes. According... [Pg.42]

In contrast to external protection, the anodes in internal protection are usually more heavily covered with corrosion products and oil residues because the electrolyte is stagnant and contaminated. The impression can be given that the anodes are no longer functional. Usually the surface films are porous and spongy and can be removed easily. This is achieved by spraying during tank cleaning. In their unaltered state they have in practice little effect on the current output in ballast seawater. In water low in salt, the anodes can passivate and are then inactive. [Pg.412]

Sea Water. The analysis of seawater (Parravano, C., State University of New York at Purchase Steams, C., unpublished) is a three-part experiment employing ion exchange techniques titrations to study the salt content of this familiar... [Pg.470]

Because seawater signatures of temperature and salinity are acquired by processes occurring at the air-sea interface we can also state that the density characteristics of a parcel of seawater are determined when it is at the sea surface. This density signature is locked into the water when it sinks. The density will be modified by mixing with other parcels of water but if the density signatures of all the end member water masses are known, this mixing can be unraveled and the proportions of the different source waters to a given parcel can be determined. [Pg.235]

Silicic acid (H4Si04) is a necessary nutrient for diatoms, who build their shells from opal (Si02 H20). Whether silicic acid becomes limiting for diatoms in seawater depends on the availability of Si relative to N and P. Estimates of diatom uptake of Si relative to P range from 16 1 to 23 1. Dugdale and Wilkerson (1998) and Dunne et al. (1999) have shown that much of the variability in new production in the equatorial Pacific may be tied to variability in diatom production. Diatom control is most important at times of very high nutrient concentrations and during non-steady-state times, perhaps because more iron is available at those times. [Pg.249]

Sulfur exists naturally in several oxidation states, and its participation in oxidation/reduc-tion reactions has important geochemical consequences. For example, when an extremely insoluble material, FeS2, is precipitated from seawater under conditions of bacterial reduction, Fe and S may be sequestered in sediments for periods of hundreds of millions of years. Sulfur can be liberated biologically or volcanically with the release of H2S or SO2 as gases. [Pg.343]

Atlas, E. L. (1975). Phosphate equilibria in seawater and interstitial waters. Ph.D. Thesis, Oregon State University. [Pg.374]

The range of processes that must be considered in the cycle of metals is described in Fig. 15-10 (Nelson et al., 1977). Both the complexity of metal cycle analysis in a real system and the importance of speciation are well-stated by Andreae (1979) in his overview of the arsenic cycle in seawater ... [Pg.398]

Sverjensky (1984) calculated the dependency of Eu +/Eu + in hydrothermal solution on /oj (oxygen fugacity), pH and temperature. According to his calculations and assuming temperature, pH and /oj for epidote-stage alteration of basalt and Kuroko ores (Shikazono, 1976), divalent Eu is considered to be dominant in the rocks and hydrothermal solution. Thus, it is reasonable to consider that Eu in the rocks was removed to hydrothermal solution under the relatively reduced condition more easily than the other REE which are all tiivalent state in hydrothermal solution. Thus, it is hkely that Eu is enriched in epidote-rich altered volcanic rocks. Probably Eu was taken up by the rocks from Eu-enriched hydrothermal solution which was generated by seawater-volcanic rock interaction at relatively low water/rock ratio. [Pg.59]

Positive Eu anomaly is observed for hydrothermal solution issuing from the hydrothermal vent on the seawater at East Pacific Rise (Bence, 1983 Michard et al., 1983 Michard and AlbarMe, 1986). Guichard et al. (1979) have shown that the continental hydrothermal barites have a positive Eu anomaly, indicating a relatively reduced environment. Graf (1977) has shown that massive sulfide deposits and associated rocks from the Bathurst-Newcastle district. New Brunswick have positive Eu anomalies. These data are compatible with positive Eu anomaly of altered basaltic rocks, ferruginous chert and Kuroko ores in Kuroko mine area having positive Eu anomaly and strongly support that Eu is present as divalent state in hydrothermal solution responsible for the hydrothermal alteration and Kuroko mineralization. [Pg.60]

Therefore, it is likely that the steady state is maintained with regard to As concentration in seawater. [Pg.423]


See other pages where Seawater state is mentioned: [Pg.17]    [Pg.268]    [Pg.178]    [Pg.198]    [Pg.25]    [Pg.179]    [Pg.94]    [Pg.313]    [Pg.237]    [Pg.237]    [Pg.239]    [Pg.278]    [Pg.471]    [Pg.1146]    [Pg.2472]    [Pg.103]    [Pg.427]    [Pg.469]    [Pg.366]    [Pg.183]    [Pg.5]    [Pg.312]    [Pg.77]    [Pg.408]    [Pg.248]    [Pg.255]    [Pg.343]    [Pg.344]    [Pg.344]    [Pg.352]    [Pg.210]    [Pg.338]    [Pg.234]    [Pg.50]    [Pg.496]   
See also in sourсe #XX -- [ Pg.513 ]




SEARCH



Carbonate minerals seawater saturation state

Oxidation state seawater

Saturation state of seawater

Saturation state seawater

Seawater redox state

Seawater steady-state

© 2024 chempedia.info