Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Saturation reaction rates

The reaction takes place at atmospheric pressure. For stable control of the reaction rate, the reaction is first carried out at a temperature of 50°C and then at 60°C. Overall, this batch reaction takes about 9 hours. After completion of reaction, the slurry is diluted to about 70% sulfuric acid solution, and cmde sulfamic acid crystals are separated by centrifuge. The crystals are dissolved in mother Hquor to make a saturated solution at 60°C and the solution is concentrated under vacuum at 40°C. Purified sulfamic acid is obtained by recrystallization. [Pg.63]

FIGURE 14.7 Substrate saturation curve for au euzyme-catalyzed reaction. The amount of enzyme is constant, and the velocity of the reaction is determined at various substrate concentrations. The reaction rate, v, as a function of [S] is described by a rectangular hyperbola. At very high [S], v= Fnax- That is, the velocity is limited only by conditions (temperature, pH, ionic strength) and by the amount of enzyme present becomes independent of [S]. Such a condition is termed zero-order kinetics. Under zero-order conditions, velocity is directly dependent on [enzyme]. The H9O molecule provides a rough guide to scale. The substrate is bound at the active site of the enzyme. [Pg.434]

Fretting in air-saturated aqueous electrolytes, such as seawater or body fluids , produces enhanced removal of material by stimulation of electrochemical reactions, increasing the reaction rates by factors of 10 to 200 compared with air, depending on the frequency. The importance of the chemical... [Pg.1337]

A pure gas is absorbed into a liquid with which it reacts. The concentration in the liquid is sufficiently low for the mass transfer to be governed by Pick s law and the reaction is first order with respect to the solute gas. It may be assumed that the film theory may be applied to the liquid and that the concentration of solute gas falls from the saturation value to zero across the film. Obtain an expression for the mass transfer rate across the gas-liquid interface in terms of the molecular diffusivity, 1), the first order reaction rate constant k. the film thickness L and the concentration Cas of solute in a saturated solution. The reaction is initially carried our at 293 K. By what factor will the mass transfer rate across the interface change, if the temperature is raised to 313 K7... [Pg.856]

A low ion pair yield of products resulting from hydride transfer reactions is also noted when the additive molecules are unsaturated. Table I indicates, however, that hydride transfer reactions between alkyl ions and olefins do occur to some extent. The reduced yield can be accounted for by the occurrence of two additional reactions between alkyl ions and unsaturated hydrocarbon molecules—namely, proton transfer and condensation reactions, both of which will be discussed later. The total reaction rate of an ion with an olefin is much higher than reaction with a saturated molecule of comparable size. For example, the propyl ion reacts with cyclopentene and cyclohexene at rates which are, respectively, 3.05 and 3.07 times greater than the rate of hydride transfer with cyclobutane. This observation can probably be accounted for by a higher collision cross-section and /or a transmission coefficient for reaction which is close to unity. [Pg.274]

Many semibatch reactions involve more than one phase and are thus classified as heterogeneous. Examples are aerobic fermentations, where oxygen is supplied continuously to a liquid substrate, and chemical vapor deposition reactors, where gaseous reactants are supplied continuously to a solid substrate. Typically, the overall reaction rate wiU be limited by the rate of interphase mass transfer. Such systems are treated using the methods of Chapters 10 and 11. Occasionally, the reaction will be kinetically limited so that the transferred component saturates the reaction phase. The system can then be treated as a batch reaction, with the concentration of the transferred component being dictated by its solubility. The early stages of a batch fermentation will behave in this fashion, but will shift to a mass transfer limitation as the cell mass and thus the oxygen demand increase. [Pg.65]

Equation (10.12) is the simplest—and most generally useful—model that reflects heterogeneous catalysis. The active sites S are fixed in number, and the gas-phase molecules of component A compete for them. When the gas-phase concentration of component A is low, the k a term in Equation (10.12) is small, and the reaction is first order in a. When a is large, all the active sites are occupied, and the reaction rate reaches a saturation value of kjkd-The constant in the denominator, is formed from ratios of rate constants. This makes it less sensitive to temperature than k, which is a normal rate constant. [Pg.356]

Catalytic activity for the selective oxidation of H2S was tested by a continuous flow reaction in a fixed-bed quartz tube reactor with 0.5 inch inside diameter. Gaseous H2S, O2, H2, CO, CO2 and N2 were used without further purification. Water vapor (H2O) was introduced by passing N2 through a saturator. Reaction test was conducted at a pressure of 101 kPa and in the temperature range of 150 to 300 °C on a 0.6 gram catalyst sample. Gas flow rates were controlled by a mass flow controller (Brooks, 5850 TR) and the gas compositions were analyzed by an on-line gas chromotograph equipped with a chromosil 310 coliunn and a thermal conductivity detector. [Pg.426]

Another important point to consider is that of control. As Fig. 2.17 shows, when the enzymes are almost saturated the rate hardly changes with the concentration of the substrate, implying that the rate of product formation cannot be controlled by [S]. Of course, control is optimally possible in the low substrate concentration regime. Hence, in cases where substrate control of the rate is important, the reaction should ideally proceed in the region of [S] between 5 and IOKm. [Pg.76]

The lower total activity for Rh electrodes may be partly due to increased CO poisoning and slower CO electro-oxidation kinetics compared with Pt electrodes, as demonstrated by the number of voltammetric cycles required to oxidize a saturated CO adlayer from Rh electrodes (see Section 6.2.2) [Housmans et al., 2004]. In addition, it is argued that the barrier to dehydrogenation is higher on Rh than on Pt, leading to a lower overall reaction rate [de Souza et al., 2002]. These effects may also explain the lower product selectivity towards acetaldehyde and acetic acid, which require the dehydrogenation of weakly adsorbed species. [Pg.196]

Let us consider the determination of two parameters, the maximum reaction rate (rITOIX) and the saturation constant (Km) in an enzyme-catalyzed reaction following Michaelis-Menten kinetics. The Michaelis-Menten kinetic rate equation relates the reaction rate (r) to the substrate concentrations (S) by... [Pg.60]

A PP sample after ozonization in the presence of UV-irradiation becomes brittle after 8 hrs of exposure, whereas the same effect in ozone is noticeable after 50-60 hours.Degradation of polymer chain occurs as a result of decomposition of peroxy radicals. The oxidation rapidly reaches saturation, suggesting the surface nature of ozone and atomic oxygen against of PP as a consequence of limited diffusion of both oxygen species into the polymer. Ozone reacts with PP mainly on the surface since the reaction rate and the concentration of intermediate peroxy radicals are proportional to the surface area and not the weight of the polymer. It has been found that polyethylene is attacked only to a depth of 5-7 microns (45). [Pg.197]

Most biological reactions fall into the categories of first-order or second-order reactions, and we will discuss these in more detail below. In certain situations the rate of reaction is independent of reaction concentration hence the rate equation is simply v = k. Such reactions are said to be zero order. Systems for which the reaction rate can reach a maximum value under saturating reactant conditions become zero ordered at high reactant concentrations. Examples of such systems include enzyme-catalyzed reactions, receptor-ligand induced signal transduction, and cellular activated transport systems. Recall from Chapter 2, for example, that when [S] Ku for an enzyme-catalyzed reaction, the velocity is essentially constant and close to the value of Vmax. Under these substrate concentration conditions the enzyme reaction will appear to be zero order in the substrate. [Pg.252]

A kinetic model describing the HRP-catalyzed oxidation of PCP by H202 should account for the effects of the concentrations of HRP, PCP, and H202 on the reaction rate. To derive such an equation, a reaction mechanism involving saturation kinetics is proposed. Based on the reaction scheme described in Section 17.3.1, which implies that the catalytic cycle is irreversible, the three distinct reactions steps (Equations 17.2 to 17.4) are modified to include the formation of Michaelis-Menten complexes ... [Pg.672]

Similar spatial distribution of active bubbles has been observed in partially degassed water and in pure water irradiated with pulsed ultrasound [67]. For both the cases, the number of large inactive bubbles is smaller than that in pure water saturated with air under continuous ultrasound, which is similar to the case of a surfactant solution. As a result, enhancement in sonochemical reaction rate (rate of oxidants production) in partially degassed water and in pure water irradiated with pulsed ultrasound has been experimentally observed [70, 71]. With regard to the enhancement by pulsed ultrasound, a residual acoustic field during the pulse-off time is also important [71]. [Pg.19]

The enzymatic activities of intercalated GOx-AM P layered nanocomposites at various pH values and temperatures were compared with the native enzyme in aqueous solution. In both cases, characteristic linear plots consistent with Michalis-Menton kinetics were obtained. The Lineweaver-Burk plots indicated that the reaction rates (Vmax) for free and intercalated GOx (3.3 and 4.0 pM min 1 respectively), were comparable, suggesting that the turnover rate at substrate saturation was only marginally influenced by entrapment between the re-assembled organoclay sheets. However, the dissociation constant (Km) associated with the activity of the enzyme was higher for intercalated GOx (6.63 mM) compared to native GOx (2.94 mM), suggesting... [Pg.250]

A plot of the initial reaction rate, v, as a function of the substrate concentration [S], shows a hyperbolic relationship (Figure 4). As the [S] becomes very large and the enzyme is saturated with the substrate, the reaction rate will not increase indefinitely but, for a fixed amount of [E], it reaches a plateau at a limiting value named the maximal velocity (vmax). This behavior can be explained using the equilibrium model of Michaelis-Menten (1913) or the steady-state model of Briggs and Haldane (1926). The first one is based on the assumption that the rate of breakdown of the ES complex to yield the product is much slower that the dissociation of ES. This means that k2 tj. [Pg.335]


See other pages where Saturation reaction rates is mentioned: [Pg.177]    [Pg.33]    [Pg.312]    [Pg.38]    [Pg.182]    [Pg.225]    [Pg.187]    [Pg.501]    [Pg.60]    [Pg.229]    [Pg.26]    [Pg.255]    [Pg.189]    [Pg.175]    [Pg.282]    [Pg.444]    [Pg.438]    [Pg.258]    [Pg.70]    [Pg.121]    [Pg.130]    [Pg.270]    [Pg.500]    [Pg.316]    [Pg.201]    [Pg.35]    [Pg.470]    [Pg.249]    [Pg.244]    [Pg.329]    [Pg.485]    [Pg.63]   
See also in sourсe #XX -- [ Pg.580 ]




SEARCH



Rate saturation

Saturated reactions

Saturation reactions

© 2024 chempedia.info