Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sample plug flowing

If samples are introduced batchwise, then the sample enters the flame as a plug and the elements are measured transiently. If the samples are introduced continuously, then the measurement of isotope ratios can also be continuous as long as sample is flowing into the flame. [Pg.396]

A system has been constructed which allows combined studies of reaction kinetics and catalyst surface properties. Key elements of the system are a computer-controlled pilot plant with a plug flow reactor coupled In series to a minireactor which Is connected, via a high vacuum sample transfer system, to a surface analysis Instrument equipped with XFS, AES, SAM, and SIMS. When Interesting kinetic data are observed, the reaction Is stopped and the test sample Is transferred from the mlnlreactor to the surface analysis chamber. Unique features and problem areas of this new approach will be discussed. The power of the system will be Illustrated with a study of surface chemical changes of a Cu0/Zn0/Al203 catalyst during activation and methanol synthesis. Metallic Cu was Identified by XFS as the only Cu surface site during methanol synthesis. [Pg.15]

Sample preparation, injection, calibration, and data collection, must be automated for process analysis. Methods used for flow injection analysis (FLA) are also useful for reliable sampling for process LC systems.1 Dynamic dilution is a technique that is used extensively in FIA.13 In this technique, sample from a loop or slot of a valve is diluted as it is transferred to a HPLC injection valve for analysis. As the diluted sample plug passes through the HPLC valve it is switched and the sample is injected onto the HPLC column for separation. The sample transfer time typically is determined with a refractive index detector and valve switching, which can be controlled by an integrator or computer. The transfer time is very reproducible. Calibration is typically done by external standardization using normalization by response factor. Internal standardization has also been used. To detect upsets or for process optimization, absolute numbers are not always needed. An alternative to... [Pg.76]

The 1/16" x 0.02" i.d. transfer line also functioned as a sample dilution device in other applications, a stainless steel column packed with glass beads has been found to be useful for dilution. This simple dynamic dilution technique has been used extensively in flow injection analysis.3 A refractive index detector is typically used to measure the sample transfer time. As shown in Figure 4, approximately 5 minutes is required to transfer the sample plug to the Rheodyne valve. As the apex of the sample band passes though the Rheodyne valve, the valve is activated and 1 pi injected onto the liquid chromatographic column. The sample transfer time was checked periodically over 1 year of operation and found to be stable. [Pg.80]

This technique differs from flow injection analysis in the sense that whereas in the latter technique the sample plug is injected into a flowing stream of reagent, in the former technique plugs of reagent are injected into a continuous stream of the sample. Under these conditions the amount of sample in the zone of the reagent will increase as the dispersion increases. The sample will become well... [Pg.95]

Van Zoonen et al. [19,20] employed an alternative approach, in an attempt to overcome the limited aqueous solubility of diaryloxalate ester-type POCL reagents. In this work, granular TCPO was mixed with controlled pore glass and packed in a flow cell, forming a solid-state TCPO reactor. When this was used in conjunction with a flow system, some of the TCPO dissolved in the carrier solution. Numerous difficulties were encountered with this approach, namely, limited reactor lifetime (approximately 8 h) and low CL emission obtained as the carrier became more aqueous (a 90% reduction of CL intensity occurred when the aqueous content of the carrier stream comprised 50% water, as compared to pure acetonitrile). The samples also required dilution with acetonitrile to increase the solubility of TCPO in the sample plug. [Pg.144]

If it is suspected (or known) that the plug flow assumption does not hold, a separate tracer study is needed to characterize the flow distribution within the pipes. These data are then used to adjust both the concentration and the sampling time, as required. If the nature of flow and mixing in the vessel is independent of the flow characteristics in the pipes, then the o1 curve for the vessel may be calculated from... [Pg.466]

Flow-injection analysis is based on the introduction of a defined volume of sample into a carrier (or reagent) stream. This results in a sample plug bracketed by carrier (Fig. 1 (a)). [Pg.32]

The physical foundation of FIA is related to the behaviour of the sample plug inserted in the flow, which is characterized mathematically hy means of dispersion. This, in turn, is defined by the shape of the profile yielded hy the injected sample portion along the system, particularly at the flow ceU. [Pg.61]

A number of applications of flow-injection techniques have been made to flame atomic absorption spectrometry [22]. Although manifolds can be connected directly to the nebuhzer, the response of the spectrometer is dependent on the flow rate of the sample into the nebuhzer [23], and some adjustment to the manifold may be required. The optimum flow rate for maximum response when the sample enters the nebuhzer as a discrete sample plug can be different from that found for analysis of a continuous sample stream. [Pg.149]

Kinetic measurements are based on signal increments over preset intervals and have the advantage of their relative rather than absolute nature, which avoids interferences from the sample matrix. Figure 2.19.B shows the different variants of kinetic measurements in this context, which depend on the type of sensor and coupled continuous configuration used. The most immediate variant involves halting the flow over an interval At when the sample plug reaches the detector (Fig. 2.19.B.2), where the (bio)chemical reaction is allowed to developed while the product of interest is monitored simultaneously. The other two variants... [Pg.72]

Rivers are close to the perfect environmental flow for describing the flow as plug flow with dispersion. The flow is confined in the transverse and vertical directions, such that a cross-sectional mean velocity and concentration can be easily defined. In addition, there is less variation in rivers than there is, for example, in estuaries or reactors - both of which are also described by the plug flow with dispersion model. For that reason, the numerous tracer tests that have been made in rivers are useful to characterize longitudinal dispersion coefficient for use in untested river reaches. A sampling of the dispersion coefficients at various river reaches that were... [Pg.165]

An isothermal, plug flow, fixed bed reforming pilot plant (shown in Fig. 14) was used to generate the kinetic data. The reactor was U shaped and contained roughly 70 ml of catalyst. Five sample taps were spaced along the reactor length to determine compositions over a wide range of catalyst contact times. The reactor assembly was immersed in a fluidized sand bath to maintain isothermal conditions. [Pg.226]


See other pages where Sample plug flowing is mentioned: [Pg.201]    [Pg.1109]    [Pg.201]    [Pg.1109]    [Pg.431]    [Pg.303]    [Pg.521]    [Pg.209]    [Pg.204]    [Pg.16]    [Pg.16]    [Pg.783]    [Pg.263]    [Pg.322]    [Pg.124]    [Pg.27]    [Pg.156]    [Pg.466]    [Pg.326]    [Pg.192]    [Pg.395]    [Pg.139]    [Pg.58]    [Pg.381]    [Pg.207]    [Pg.207]    [Pg.232]    [Pg.58]    [Pg.69]    [Pg.278]    [Pg.196]    [Pg.72]    [Pg.74]    [Pg.133]    [Pg.229]    [Pg.235]    [Pg.273]    [Pg.303]    [Pg.455]    [Pg.16]   
See also in sourсe #XX -- [ Pg.111 ]




SEARCH



Flow flowing samples

Flow sampling

Flowing Samples

Plug flow

Sample flow

© 2024 chempedia.info