Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ruhrchemie

Bach H, Gick W, Konkol W and Wiebus E 1988 The Ruhrchemie/Rhone-Poulenc (RHV/RP) process-latest variant of the fifty-year-old hydroformylation reaction Proc. 9th Int. Congr. on Catalysis vol 1, pp 254-9... [Pg.2713]

Polygas Olefins. Refinery propylene and butenes are polymerized with a phosphoric acid catalyst at 200°C and 3040—6080 kPa (30—60 atm) to give a mixture of branched olefins up to used primarily in producing plasticizer alcohols (isooctyl, isononyl, and isodecyl alcohol). Since the olefins are branched (75% have two or more CH groups) the alcohols are also branched. Exxon, BASE, Ruhrchemie (now Hoechst), ICl, Nissan, Getty Oil, U.S. Steel Chemicals (now Aristech), and others have all used this olefin source. [Pg.458]

Other Dimer Olefins. Olefins for plasticizer alcohols are also produced by the dimerization of isobutene [115-11-7] 4 8 codimerization of isobutene and / -butene [25167-67-3]. These highly branched octenes lead to a highly branched isononyl alcohol [68526-84-1] product. BASE, Ruhrchemie, ICl, Nippon Oxocol, and others have used this source. [Pg.458]

Developments Outside Germany. In the late 1930s experimental work in England (29—31) led to the erection of large pilot faciHties for Fischer-Tropsch studies (32). In France, a commercial faciHty near Calais produced ca 150 m (940 bbl) of Hquid hydrocarbons per day. In Japan, two fijH-scale plants were also operated under Ruhrchemie Hcense. Combined capacity was ca 400 m (2500 bbl) of Hquids pet day. [Pg.80]

In the mid-1930s Universal Oil Products reported (33,34) that gasoline of improved quaHty could be produced by cracking the high boiling fractions of Fischer Hquids, and a consortium, the Hydrocarbon Synthesis, Inc., entered into an agreement with Ruhrchemie to Hcense the Fischer synthesis outside Germany. [Pg.80]

The largest oxo producers ia Western Europe are BASE, Hbls, and Hoechst (formerly Ruhrchemie), representing 50—51% of the total regional capacity of 2.527 x 10 metric tons. These companies have the broadest spectmm of products ranging from and adehydes to alcohols and acids. However the primary products are n- and isobutyraldehyde, at combiaed capacities of 1.08 x 10 t. The -butyraldehyde goes principally iato the manufacture of 2-EH. [Pg.472]

Fig. 20. Homogeneous rliodium-cataly2ed oxo process in biphasic media developed by Ruhrchemie/Rhc ne-Poulenc (83). Fig. 20. Homogeneous rliodium-cataly2ed oxo process in biphasic media developed by Ruhrchemie/Rhc ne-Poulenc (83).
In the mid-1980s, Ruhrchemie (now Hoechst) converted its oxo capacity to a proprietary water soluble rhodium catalyzed process (27,28), a technology developed jointly with Rhc ne-Poulenc. Product separation in this process is by decantation. Isomer ratios of n- to isobutyraldehyde of about 20 1 are obtained. [Pg.380]

Sasol uses both fixed-bed reactors and transported fluidized-bed reactors to convert synthesis gas to hydrocarbons. The multitubular, water-cooled fixed-bed reactors were designed by Lurgi and Ruhrchemie, whereas the newer fluidized-bed reactors scaled up from a pilot unit by Kellogg are now known as Sasol Synthol reactors. The two reactor types use different iron-based catalysts and give different product distributions. [Pg.199]

Gasification" under "Coal Chemicals and Eeedstocks" in ECT3rd ed.. Supplement pp. 194—215, byj. Ealbe, D. C. Erohning, and B. CornUs, Ruhrchemie... [Pg.277]

Fig. 13. Flowsheet of medium pressure synthesis, fixed-bed reactor (Lurgi-Ruhrchemie-Sasol) having process conditions for SASOL I of an alkaline, precipitated-iron catalyst, reduction degree 20—25% having a catalyst charge of 32—36 t, at 220—255°C and 2.48 MPa (360 psig) at a fresh feed rate of... Fig. 13. Flowsheet of medium pressure synthesis, fixed-bed reactor (Lurgi-Ruhrchemie-Sasol) having process conditions for SASOL I of an alkaline, precipitated-iron catalyst, reduction degree 20—25% having a catalyst charge of 32—36 t, at 220—255°C and 2.48 MPa (360 psig) at a fresh feed rate of...
Good rhodium retention results were obtained after several recycles. However, optimized ligand/metal ratios and leaching and decomposition rates, which can result in the formation of inactive catalyst, are not known for these ligands and require testing in continuous mode. As a reference, in the Ruhrchemie-Rhone-Poulenc process, the losses of rhodium are <10 g Rh per kg n-butyraldehyde. [Pg.268]

Although rhodium recovery is efficient it is difficult to separate it from heavies that are formed in small amounts. Over time these heavies tend to result in some catalyst deactivation. One solution to this problem has been developed by Ruhrchemie/Rhone-Poulenc. In this process sulfonated triphenyl phosphine is used as the ligand, which imparts water solubility to the catalyst. The reaction is two-phase, a lower aqueous phase containing the catalyst and an upper organic phase. Fortunately the catalyst appears to sit at the interface enabling reaction to proceed efficiently. At the end of... [Pg.111]

An example of a large scale application of the aqueous biphasic concept is the Ruhrchemie/Rhone-Poulenc process for the hydroformylation of propylene to n-butanal (Eqn. (15)), which employs a water-soluble rhodium(I) complex of trisulphonated triphenylphosphine (tppts) as the catalyst (Cornils and Wiebus, 1996). [Pg.46]

The adoption of a second liquid phase has also proved useful in the hydroformylation reaction of propylene for which Ruhrchemie and Rhone-Poulenc have used Rh based water... [Pg.140]

Immobilization of catalysts is an important process design feature (see Chapter 9.9). A recent example of catalyst immobilization is the biphasic approach which seems superior to immobilization on solids, as successfully proven in the Ruhrchemie/Rhone Poulenc process for the hydro-formylation of olefins.286 Supported liquid phase catalysis was devised as a method for the immobilization of homogeneous catalysts on solids. When the liquid phase is water, a water-soluble catalyst may be physically bound to the solid. [Pg.114]

Cobalt carbonyls are the oldest catalysts for hydroformylation and they have been used in industry for many years. They are used either as unmodified carbonyls, or modified with alkylphosphines (Shell process). For propene hydroformylation, they have been replaced by rhodium (Union Carbide, Mitsubishi, Ruhrchemie-Rhone Poulenc). For higher alkenes, cobalt is still the catalyst of choice. Internal alkenes can be used as the substrate as cobalt has a propensity for causing isomerization under a pressure of CO and high preference for the formation of linear aldehydes. Recently a new process was introduced for the hydroformylation of ethene oxide using a cobalt catalyst modified with a diphosphine. In the following we will focus on relevant complexes that have been identified and recently reported reactions of interest. [Pg.154]

Celanese Europe GmbH, Werk Ruhrchemie, D-46128 Oberhausen, Germany ... [Pg.105]

Biphasic techniques for recovery and recycle are among the recent improvements of homogeneous catalysis - and they are the only developments which have been recently and successfully applied in the chemical industry. They are specially introduced into the hydroformylation (or "oxo") reaction, where they form a fourth generation of oxo processes (Figure 5.1 [1]). They are established as the "Ruhrchemie/Rhone-Poulenc process" (RCH/RP) [2] cf. also Section 5.2.4.1), with annual production rates of approximately 800,000 tonnes y"1 (tpy). [Pg.105]

Figure 5.1. The generations of oxo processes [3] (symbolized by full points).A, First generation Ruhrchemie process 1943 (diaden process [4]) B, second generation Ruhrchemie process C, second generation BASF process D, second generation Kuhlmann process E, third generation Shell process F, third generation LPO (UCC) process G, third generation BASF process H, third generation Exxon (Kuhlmann) process I, fourth generation Ruhrchemie/Rhone-Poulenc process... Figure 5.1. The generations of oxo processes [3] (symbolized by full points).A, First generation Ruhrchemie process 1943 (diaden process [4]) B, second generation Ruhrchemie process C, second generation BASF process D, second generation Kuhlmann process E, third generation Shell process F, third generation LPO (UCC) process G, third generation BASF process H, third generation Exxon (Kuhlmann) process I, fourth generation Ruhrchemie/Rhone-Poulenc process...
The hydroformylation reaction is highly exothermic, which makes temperature control and the use of the reaction heat potentially productive and profitable (e.g, steam generation). The standard installation of Ruhrchemie/Rhone-Poulenc s aqueous-phase processes is heat recovery by heat exchangers done in a way that the reboiler of the distillation column for work-up of the oxo products is a falling film evaporator... [Pg.112]

Figure 5.7. Process design for the Ruhrchemie/Rhone-Poulenc oxo process... Figure 5.7. Process design for the Ruhrchemie/Rhone-Poulenc oxo process...
Figure 5.13. Large-scale oxo plant using the water-soluble Ruhrchemie/Rhone-Poulenc catalyst [HRh(COXTPPTS)3]. Note the horizontal decanter in front of the reactor... Figure 5.13. Large-scale oxo plant using the water-soluble Ruhrchemie/Rhone-Poulenc catalyst [HRh(COXTPPTS)3]. Note the horizontal decanter in front of the reactor...
Eventually, the spent catalyst solution has to leave the oxo loop for work-up. The Ruhrchemie works of Celanese AG in Oberhausen (Germany) operate several rhodium-based oxo processes besides the well-known Ruhrchemie/Rhone-Poulenc process (RCF1/RP, the described low pressure oxo process with TPPTS-modified Rh catalyst), there are the Ruhrchemie process with an unmodified Rh catalyst at high pressure (comparable to the late ICI process [76] this variant is for the benefit of a high iso/n ratio... [Pg.128]


See other pages where Ruhrchemie is mentioned: [Pg.164]    [Pg.164]    [Pg.166]    [Pg.79]    [Pg.80]    [Pg.469]    [Pg.473]    [Pg.510]    [Pg.203]    [Pg.118]    [Pg.382]    [Pg.382]    [Pg.382]    [Pg.234]    [Pg.258]    [Pg.165]    [Pg.14]    [Pg.76]    [Pg.92]    [Pg.176]    [Pg.107]    [Pg.114]    [Pg.118]    [Pg.128]    [Pg.142]    [Pg.144]   
See also in sourсe #XX -- [ Pg.232 ]

See also in sourсe #XX -- [ Pg.47 , Pg.86 , Pg.93 , Pg.94 , Pg.99 ]

See also in sourсe #XX -- [ Pg.149 , Pg.166 , Pg.291 ]

See also in sourсe #XX -- [ Pg.62 , Pg.64 ]

See also in sourсe #XX -- [ Pg.97 , Pg.116 , Pg.294 ]

See also in sourсe #XX -- [ Pg.14 ]

See also in sourсe #XX -- [ Pg.148 , Pg.153 , Pg.154 , Pg.161 , Pg.164 , Pg.168 , Pg.169 ]




SEARCH



Hydroformylation Ruhrchemie/Rhone-Poulenc process

Hydroformylation Ruhrchemie/Rhone-Poulenc propen

Rhodium-catalyzed biphasic hydroformylation of olefins. The Ruhrchemie-Rhone Poulenc process for manufacturing butyraldehyde

Ruhrchemie TPPTS

Ruhrchemie and I. G. Farbenindustrie

Ruhrchemie and Rhone-Poulenc

Ruhrchemie hydroformylation process

Ruhrchemie plant

Ruhrchemie process

Ruhrchemie process catalysts

Ruhrchemie process converter

Ruhrchemie process development

Ruhrchemie process operation

Ruhrchemie water-soluble rhodium catalyst

Ruhrchemie/Rhone-Poulenc

Ruhrchemie/Rhone-Poulenc hydroformylation

Ruhrchemie/Rhone-Poulenc process

Ruhrchemie/Rhone-Poulenc propene

Ruhrchemie/Rhone-Poulenc propene hydroformylation

Ruhrchemie/Rhone-Poulenc’s

© 2024 chempedia.info