Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Routing.Part

The e. posure route partly determines the distribution of the chemical in die body. Like tlie chemical benzene, a single chemical may follow multiple routes of e. posure. The liver, like the skin, acts as a filter. The liver is the primary dcto.xification site. To.xicants that arc absorbed into the lungs, skin, mouth, and esophagus may temporarily bypass the liver however, toxicants absorbed tluougli the stomach and intestines follow the blood s direct path to tlie liver. [Pg.308]

Additional continuous-load experiments were performed in which the total inflow and effluent were analyzed by routing part of the stream through the cell of the then-stationary counting device. These data furnished the basis for the quantitative evaluation of removal efficiency, information that could be used eventually for the quantification of the 3-axis in Figure 1. [Pg.389]

Determine proper inventory buffers (special levels) for routed parts leaving cell to back shops (i.e., welding, machining, plating, etc.). [Pg.176]

When the substrate is converted in catabolic routes part of the liberated enthalpy is conserved in the production of ATP and another part is evolved as heat (Scat) (Figure 3). The ATP formed in the catabolic reactions is consumed in the anabolic reactions and heat is evolved also in this step (Sanab)- The result... [Pg.371]

The forces are calculated as part of a molecular dynamics simulation, cind so little additional effort is required to calculate the virial and thus the pressure. The forces are not routinely calculated during a Monte Carlo simulation, and so some additional effort is required to determine the pressure by this route. When calculating the pressure it is also important to check that the components of the pressure in all three directions are equal. [Pg.323]

A is common to all the routes we are considering but it is obviously cheaper to use a mole of cyanide or nitromethane rather than another mole of rnalonate. In fact, though, these contribute relatively httle to the cost, the main part being p-chlorobenzaldehyde. So, use whichever route you hke ... [Pg.114]

Since the six carbons shown above have 10 additional bonds, the variety of substituents they carry or the structures they can be a part of is quite varied, making the Diels-Alder reaction a powerful synthetic tool in organic chemistry. A moment s reflection will convince us that a molecule like structure [XVI] is monofunctional from the point of view of the Diels-Alder condensation. If the Diels-Alder reaction is to be used for the preparation of polymers, the reactants must be bis-dienes and bis-dienophiles. If the diene, the dienophile, or both are part of a ring system to begin with, a polycyclic product results. One of the first high molecular weight polymers prepared by this synthetic route was the product resulting from the reaction of 2-vinyl butadiene [XIX] and benzoquinone [XX] ... [Pg.337]

The routes by which mineral phosphates are processed into finished fertilizers are outlined in Eigure 7. World and U.S. trends in the types of products produced are shown in Eigures 8 and 9, respectively. Most notable in both instances is the large, steady increase in the importance of monoammonium and diammonium phosphates as finished phosphate fertilizers at the expense of ordinary superphosphate, and to some extent at the expense of triple superphosphate. In the United States, about 65% of the total phosphate appHed is now in the form of granular ammonium phosphates, and additional amounts of ammonium phosphates are appHed as integral parts of granulated mixtures and fluid fertilizers. [Pg.222]

Ethylene Stripping. The acetylene absorber bottom product is routed to the ethylene stripper, which operates at low pressure. In the bottom part of this tower the loaded solvent is stripped by heat input according to the purity specifications of the acetylene product. A lean DMF fraction is routed to the top of the upper part for selective absorption of acetylene. This feature reduces the acetylene content in the recycle gas to its minimum (typically 1%). The overhead gas fraction is recycled to the cracked gas compression of the olefin plant for the recovery of the ethylene. [Pg.391]

Although the concept of polymer blends is sometimes a route for a voiding the development of new polymers, it often has been an integral part of the utiliza tion of new polymer chemistry, eg, the commercial success of PPO hinged on the advantages of its blends with PS. [Pg.423]

Oxidation of polysaccharides is a far more attractive route to polycarboxylates, potentially cleaner and less cosdy than esterification. Selectivity at the 2,3-secondary hydroxyls and the 6-primary is possible. Total biodegradation with acceptable property balance has not yet been achieved. For the most part, oxidations have been with hypochlorite—periodate under alkaline conditions. In the 1990s, catalytic oxidation has appeared as a possibiUty, and chemical oxidations have also been developed that are specific for the 6-hydroxyl oxidation. [Pg.483]

Vacuum flash processes, which operate under the atmospheric boiling point of the solution, include the Uhde—LG. Farbenindustrie process and the closely related Kestner process (22). In these, ammonia, nitric acid, and recirculated ammonium nitrate solution are fed into the neutralizer. Hot solution overflows to an intermediate tank and then to a flash evaporator kept at 18—20 kPa (0.18—0.2 atm) absolute pressure. Partial evaporation of water at this point cools and concentrates the solution, part of which is routed to evaporation. The rest is circulated to the neutralizer. [Pg.366]

Early Synthesis. Reported by Kolbe in 1859, the synthetic route for preparing the acid was by treating phenol with carbon dioxide in the presence of metallic sodium (6). During this early period, the only practical route for large quantities of sahcyhc acid was the saponification of methyl sahcylate obtained from the leaves of wintergreen or the bark of sweet bitch. The first suitable commercial synthetic process was introduced by Kolbe 15 years later in 1874 and is the route most commonly used in the 1990s. In this process, dry sodium phenate reacts with carbon dioxide under pressure at elevated (180—200°C) temperature (7). There were limitations, however not only was the reaction reversible, but the best possible yield of sahcyhc acid was 50%. An improvement by Schmitt was the control of temperature, and the separation of the reaction into two parts. At lower (120—140°C) temperatures and under pressures of 500—700 kPa (5—7 atm), the absorption of carbon dioxide forms the intermediate phenyl carbonate almost quantitatively (8,9). The sodium phenyl carbonate rearranges predominately to the ortho-isomer. sodium sahcylate (eq. 8). [Pg.286]

Alternatives to oxychlorination have also been proposed as part of a balanced VCM plant. In the past, many vinyl chloride manufacturers used a balanced ethylene—acetylene process for a brief period prior to the commercialization of oxychlorination technology. Addition of HCl to acetylene was used instead of ethylene oxychlorination to consume the HCl made in EDC pyrolysis. Since the 1950s, the relative costs of ethylene and acetylene have made this route economically unattractive. Another alternative is HCl oxidation to chlorine, which can subsequently be used in dkect chlorination (131). The SheU-Deacon (132), Kel-Chlor (133), and MT-Chlor (134) processes, as well as a process recently developed at the University of Southern California (135) are among the available commercial HCl oxidation technologies. Each has had very limited industrial appHcation, perhaps because the equiHbrium reaction is incomplete and the mixture of HCl, O2, CI2, and water presents very challenging separation, purification, and handling requkements. HCl oxidation does not compare favorably with oxychlorination because it also requkes twice the dkect chlorination capacity for a balanced vinyl chloride plant. Consequently, it is doubtful that it will ever displace oxychlorination in the production of vinyl chloride by the balanced ethylene process. [Pg.422]

The earliest method for manufacturiag carbon disulfide involved synthesis from the elements by reaction of sulfur and carbon as hardwood charcoal in externally heated retorts. Safety concerns, short Hves of the retorts, and low production capacities led to the development of an electric furnace process, also based on reaction of sulfur and charcoal. The commercial use of hydrocarbons as the source of carbon was developed in the 1950s, and it was still the predominate process worldwide in 1991. That route, using methane and sulfur as the feedstock, provides high capacity in an economical, continuous unit. Retort and electric furnace processes are stiU used in locations where methane is unavailable or where small plants are economically viable, for example in certain parts of Africa, China, India, Russia, Eastern Europe, South America, and the Middle East. Other technologies for synthesis of carbon disulfide have been advocated, but none has reached commercial significance. [Pg.29]

The GI absorption of the dmg after po adrninistration is slow and variable with estimates ranging from 20—55%. Once absorbed, 96% of the dmg is bound to plasma proteins and other tissues on the body. Whereas peak plasma concentrations may be achieved in 3—7 h, the onset of antiarrhythmic action may occur in 2—3 days or more. This may result, in part, from distribution to and concentration of the dmg in adipose tissue, Hver, spleen, and lungs. Therapeutic plasma concentrations are 1—2 p.g/mL, although there appears to be no correlation between plasma concentration and antiarrhythmic activity. The plasma half-life after discontinuation of the dmg varies from 13—103 days. The dmg is metabolized in the Hver and the principal metaboHte is desethylamiodarone. The primary route of elimination is through the bile. Less than 1% of the unchanged dmg is excreted in the urine. The dmg can also be eliminated in breast milk and through the skin (1,2). [Pg.121]


See other pages where Routing.Part is mentioned: [Pg.385]    [Pg.180]    [Pg.389]    [Pg.829]    [Pg.726]    [Pg.385]    [Pg.180]    [Pg.389]    [Pg.829]    [Pg.726]    [Pg.2419]    [Pg.2422]    [Pg.99]    [Pg.49]    [Pg.106]    [Pg.313]    [Pg.119]    [Pg.68]    [Pg.240]    [Pg.23]    [Pg.180]    [Pg.39]    [Pg.160]    [Pg.189]    [Pg.515]    [Pg.239]    [Pg.291]    [Pg.466]    [Pg.460]    [Pg.389]    [Pg.69]    [Pg.172]    [Pg.32]    [Pg.346]    [Pg.120]    [Pg.14]   


SEARCH



© 2024 chempedia.info