Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rhodium carbonyls synthesis

Shibata and co-workers have reported an effective protocol for the cyclization/hydrosilylation of functionalized eneallenes catalyzed by mononuclear rhodium carbonyl complexes.For example, reaction of tosylamide 13 (X = NTs, R = Me) with triethoxysilane catalyzed by Rh(acac)(GO)2 in toluene at 60 °G gave protected pyrrolidine 14 in 82% yield with >20 1 diastereoselectivity and with exclusive delivery of the silane to the G=G bond of the eneallene (Equation (10)). Whereas trimethoxysilane gave results comparable to those obtained with triethoxysilane, employment of dimethylphenylsilane or a trialkylsilane led to significantly diminished yields of 14. Although effective rhodium-catalyzed cyclization/hydrosilylation was restricted to eneallenes that possessed terminal disubstitution of the allene moiety, the protocol tolerated both alkyl and aryl substitution on the terminal alkyne carbon atom and was applicable to the synthesis of cyclopentanes, pyrrolidines, and tetrahydrofurans (Equation (10)). [Pg.376]

Under mild conditions, hydroformylation of olefins with rhodium carbonyl complexes selectively produces aldehydes. A one-step synthesis of oxo alcohols is possible using monomeric or polymeric amines, such as dimethylbenzylamine or anion exchange resin analog to hydrogenate the aldehyde. The rate of aldehyde hydrogenation passes through a maximum as amine basicity and concentration increase. IR data of the reaction reveal that anionic rhodium carbonyl clusters, normally absent, are formed on addition of amine. Aldehyde hydrogenation is attributed to enhanced hydridic character of a Rh-H intermediate via amine coordination to rhodium. [Pg.249]

As mentioned in the previous section, the carbonylation of methanol to acetic acid is an important industrial process. Whereas the [Co2(CO)s]-catalyzed, iodide-promoted reaction developed by BASF requires pressures of the order of 50 MPa, the Monsanto rhodium-catalyzed synthesis, which is also iodide promoted and which was discovered by Roth and co-workers, can be operated even at normal pressure, though somewhat higher pressures are used in the production units.4,1-413 The rhodium-catalyzed process gives a methanol conversion to acetic acid of 99%, against 90% for the cobalt reaction. The mechanism of the Monsanto process has been studied by Forster.414 The anionic complex m-[RhI2(CO)2]- (95) initiates the catalytic cycle, which is shown in Scheme 26. [Pg.272]

In the case of rhodium, however, it was demonstrated early that in the synthesis of [Rh6C(CO)l5]2 the encapsulated carbon atom originated as chloroform, which had reacted with the rhodium carbonyl anion [Rh7(CO)l6]3- (59). In the cobalt analog, [Co6C(CO)l5]2-, the carbon atom is derived indirectly from carbon tetrachloride [via Co3(CO)9CCl] (60) Both these syntheses are performed under mild conditions, and there are apparently no examples of carbidocarbonyl clusters of cobalt or rhodium prepared directly from the metal carbonyls under pyrolysis conditions. [Pg.49]

Three-component aldol synthesis.1 This rhodium carbonyl can promote aldol coupling of enol silyl ethers with aldehydes or ketones. It can also effect coupling of an enone, an aldehyde, and a trialkylsilane to provide a silyl aldol. In the case of an enolizable aldehyde, yields are improved by addition of a phosphine ligand such as... [Pg.352]

In the 1970s Union Carbide had reported the use of rhodium with promoters such as amines, carboxylates, etc. for the synthesis of ethylene glycol from CO plus H2. Manufacture of ethylene glycol by this route, however, was never commercialized. The mechanism of this reaction is not understood. Both mononuclear and polynuclear (cluster) rhodium carbonyls can be seen by NMR and IR spectroscopy under conditions approximating that of the catalytic reaction. The question as to whether the catalytic intermediates are mononuclear or cluster has not been answered with any certainty so far. [Pg.66]

S. Martinengo, G. Ciani, A. Sironi, and P. Chini, Analogues of Metallic Lattices in Rhodium Carbonyl Cluster Chemistry. Synthesis and X-ray Structure of the [Rh15 ( i-CO)14(CO)13]3 and [Rh14((j,-CO)15(CO)9]4 Anions Showing a Stepwise Hexagonal Close-Packed/Body-Centered Cubic Interconversion, J. Am. Chem. Soc. 100,7096-7098 (1979). [Pg.125]

The compound Rh4(CO)12 has a large number of applications. It is used in catalysis directly or as a catalyst precursor, and it is the starting material both for substitution reactions and for the synthesis of other rhodium carbonyl... [Pg.209]

Tri-/i-carbonyl-nonacarbonyltetrarhodium is the starting material for the synthesis of a large number of rhodium carbonyl cluster compounds.10... [Pg.211]

The compound Na2 [Rh12(CO)30] can be prepared by reaction of Rh2(CO)4-Cl2 with sodium acetate in methanol under an atmosphere of carbon monoxide.1 It contains one of the fust polynuclear anions to be formed when the rhodium carbonyls or carbonyl halides are reduced by the action of alkaline reagents in alcohols or by alkali metals in tetrahydrofuran (THF). It provides a unique example of a double octahedral cluster carbonyl anion in which the noble gas rule is not obeyed,1 2 and it is a starting material for the preparation of other polynuclear rhodium carbonyl anions.1 3"5 The synthesis reported here is a modification of the original method. The starting material is Rh4(CO)i2, now easily prepared at atmospheric pressure.6"8 The reaction is fast, and the overall procedure requires about 6-7 hours with 80-85% yields. [Pg.215]

Unsaturated lactones lacking substitution at C-4 are the simi est ones available via this general type of cycloaddition. Several syntheses of these lactones are of practical value, including two Pd-based meth-ods. However, the considerable utility of metal carbonyl anions in lactone synthesis is illustrated by a rhodium carbonyl anion catalyst system which gives very high yields upon reaction with a variety of internal alkynes under weakly basic aqueous conditions, essentially water-gas shift conditions. These conditions were established to maximize chemoselectivity with respect to other possible alkyne carbonylation products. Regioselectivity is modest in this process, but was not examined systematic ly (equation 13). ... [Pg.1137]

Structure 4 is an intermediate for manufaeturing vitamin A (Scheme 2). The annual demand for vitamin A is about 3000 tons. Major producers are BASF, Hoffmann-La Roche and Rhone-Poulenc Animal Nutrition [55]. At an early stage in the synthesis BASF and Hoffmann-La Roche are using a hydroformylation step to synthesize 4 starting from l,2-diacetoxy-3-butene (5) and 1,4-di-aeetoxy-2-butene (6), respectively [56, 57]. The selectivity toward the branched product in the BASF process is achieved by using an unmodified rhodium carbonyl catalyst at a high reaction temperature. The symmetry of 6 in La Roche s process does not lead to regioselectivity problems. Elimination of acetic acid and isomerization of the exo double bond (La Roche) yields the final product 4 in both processes. [Pg.40]

In a collaborative effort with Dr. B. T. Heaton from the Iftiiverslty of Rent at Canterbury, England, we have recently applied this technique W to measure spectra of rhodium carbonyl clusters under high pressure of CO and H2. In connection with the efforts by the petrochemical Industry to find catalytic syntheses which use CO and H. there is increasing evidence that transition metal carbonyl clusters are Involved in the catalytic synthesis of ethylene glycol and in the Fischer Tropsch and related reactions. [Pg.200]

Catalytic processes that take place in a uniform gas or liquid phase are classified as homogeneous catalysis. Homogeneous catalysts are generally well-defined chemical compounds or coordination complexes, which, together with the reactants, are molecularly dispersed in the reaction medium. Examples of homogeneous catalysts include mineral acids and transition metal compounds (e. g., rhodium carbonyl complexes in 0X0 synthesis). [Pg.10]


See other pages where Rhodium carbonyls synthesis is mentioned: [Pg.118]    [Pg.188]    [Pg.235]    [Pg.334]    [Pg.7]    [Pg.204]    [Pg.291]    [Pg.37]    [Pg.61]    [Pg.164]    [Pg.116]    [Pg.17]    [Pg.289]    [Pg.106]    [Pg.61]    [Pg.418]    [Pg.88]    [Pg.75]    [Pg.1277]    [Pg.226]    [Pg.75]    [Pg.302]    [Pg.491]    [Pg.246]    [Pg.9]    [Pg.167]   
See also in sourсe #XX -- [ Pg.710 ]

See also in sourсe #XX -- [ Pg.818 ]

See also in sourсe #XX -- [ Pg.899 ]




SEARCH



Carbonyls synthesis

Rhodium carbonylation

Rhodium carbonyls

Rhodium synthesis

Synthesis carbonylation

© 2024 chempedia.info