Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rhodium carbonyl complexes review

Support-bound transition metal complexes have mainly been prepared as insoluble catalysts. Table 4.1 lists representative examples of such polymer-bound complexes. Polystyrene-bound molybdenum carbonyl complexes have been prepared for the study of ligand substitution reactions and oxidative eliminations [51], Moreover, well-defined molybdenum, rhodium, and iridium phosphine complexes have been prepared on copolymers of PEG and silica [52]. Several reviews have covered the preparation and application of support-bound reagents, including transition metal complexes [53-59]. Examples of the preparation and uses of organomercury and organo-zinc compounds are discussed in Section 4.1. [Pg.165]

Rhodium-phosphine complexes are usually active and effective in the asymmetric hydrosilylation of olefins, ketones, and aldehydes, allowing for the virtual synthesis of optically active alkoxysilanes and organic compounds of high purity. Chiral rhodium-phosphine catalysts predominate in the hydrosilylation of pro-chiral ketones. This subject has been comprehensively reviewed by several authors who have made major contributions to this field [52-54]. A mechanism for the hydrosilylation of carbonyl groups involving the introduction of asymmetry is shown in Scheme 3 [55]. [Pg.497]

This chapter will not deal with iridium complexes in which the coordination chemistry of the iridium-carbon bond is implicated inasmuch as Leigh and Richards have very recently (1982) provided an excellent detailed review on such compoimds organoiridium and iridium carbonyl complexes were also previously reviewed. Iridium complex chemistry has been reviewed (1980) along with rhodium," and in annual reviews. Additionally, iridium complexes have been treated in Comprehensive Inorganic Chemistry . ... [Pg.4553]

Supported metal complexes and clusters with well-defined structures offer the advantages of catalysts that are selective and structures that can be understood in depth. Such catalysts can be synthesized precisely with organometallic precursors, as illustrated in this review. Synthetic methods are illustrated with examples, including silica-supported chromium and titanium complexes for alkene polymerization rhodium carbonyls bonded predominantly at crystallographically specific sites in a zeolite and metal clusters, including Ir4, Rhg, OsjC, and bimetallics. [Pg.237]

Platinum complexes with chiral phosphorus ligands have been extensively used in asymmetric hydroformylation. In most cases, styrene has been used as the substrate to evaluate the efficiency of the catalyst systems. In addition, styrere was of interest as a model intermediate in the synthesis of arylpropionic acids, a family of anti-inflammatory drugs.308,309 Until 1993 the best enantio-selectivities in asymmetric hydroformylation were provided by platinum complexes, although the activities and regioselectivities were, in many cases, far from the obtained for rhodium catalysts. A report on asymmetric carbonylation was published in 1993.310 Two reviews dedicated to asymmetric hydroformylation, which appeared in 1995, include the most important studies and results on platinum-catalogued asymmetric hydroformylation.80,81 A report appeared in 1999 about hydrocarbonylation of carbon-carbon double bonds catalyzed by Ptn complexes, including a proposal for a mechanism for this process.311... [Pg.166]

This chapter will address the development of selected stereoselective rhodium-catalyzed carbonylation reactions and their application to problems in organic synthesis. It is in no way intended to serve as a comprehensive review of rhodium-catalyzed carbonylation chemistry. The focus, rather, is on the development of stereoselective rhodium-catalyzed carbonylation reactions for use in the synthesis of stereochemically complex natural products, particularly polyketides. [Pg.93]

Using the catalyst system described above in combination with a rhodium phosphine catalyst Lebel reported the de novo synthesis of alkenes from alcohols [100]. They developed a one-pot process, avoiding the isolation and purification of the potentially instable aldehyde intermediate. They combined the oxidation of alcohols developed by Sigman [89] with their rhodium-catalyzed methylenation of carbonyl derivatives. The cascade process is compatible with primary and secondary aliphatic as well as benzyUc alcohols in good yields. They even added another reaction catalyzed by a NHC complex, the metathesis reaction, which has not been addressed in this review as there are many good reviews, which exclusively and in great depth describe all aspects of the reaction. [Pg.189]

Reaction (78) regenerates Mel from methanol and HI. Using a high-pressure IR cell at 0.6 MPa, complex (95) was found to be the main species present under catalytic conditions, and the oxidative addition of Mel was therefore assumed to be the rate determining step. The water-gas shift reaction (equation 70) also occurs during the process, causing a limited loss of carbon monoxide. A review of the cobalt-, rhodium- and iridium-catalyzed carbonylation of methanol to acetic acid is available.415... [Pg.272]

The products of oxidative addition of acyl chlorides and alkyl halides to various tertiary phosphine complexes of rhodium(I) and iridium(I) are discussed. Features of interest include (1) an equilibrium between a five-coordinate acetylrhodium(III) cation and its six-coordinate methyl(carbonyl) isomer which is established at an intermediate rate on the NMR time scale at room temperature, and (2) a solvent-dependent secondary- to normal-alkyl-group isomerization in octahedral al-kyliridium(III) complexes. The chemistry of monomeric, tertiary phosphine-stabilized hydroxoplatinum(II) complexes is reviewed, with emphasis on their conversion into hydrido -alkyl or -aryl complexes. Evidence for an electronic cis-PtP bond-weakening influence is presented. [Pg.196]

Reviews have appeared of the photophysics of molybdenum complexes, primary and secondary processes in organometallic chemistry, flash photolysis of Pe(CO)5 and Cr(CO)g, dinuclear manganese carbonyl compounds, the photochemistry of metal complexes isolated in low temperature matrices, cluster complexes, diene complexes, photoproduction of coordinativeiy unsaturated species containing rhodium or iridium, and redox chemiluminescence of organometallic compounds.Synthetic and metal organic photochemistry in industry has also been reviewed. [Pg.103]

Although ruthenium is significantly less expensive than rhodium and although its use has been recommended since 1960 (7) for the oxo synthesis, complexes of this metal have not been developed as catalysts. However, many papers and patents have referred to the results obtained employing various ruthenium complexes. The purpose of this article is to analyze the work done involving ruthenium compounds, restricting the scope only to the hydroformylation reaction and not to the carbonylation reaction, which would demand to too lengthy an article. In this review we examine successively mononuclear ruthenium complexes, ruthenium clusters as precursors, photochemical activation, and supported catalysis. [Pg.122]

Vanhoye and coworkers [402] synthesized aldehydes by using the electrogenerated radical anion of iron pentacarbonyl to reduce iodoethane and benzyl bromide in the presence of carbon monoxide. Esters can be prepared catalytically from alkyl halides and alcohols in the presence of iron pentacarbonyl [403]. Yoshida and coworkers reduced mixtures of organic halides and iron pentacarbonyl and then introduced an electrophile to obtain carbonyl compounds [404] and converted alkyl halides into aldehydes by using iron pentacarbonyl as a catalyst [405,406]. Finally, a review by Torii [407] provides references to additional papers that deal with catalytic processes involving complexes of nickel, cobalt, iron, palladium, rhodium, platinum, chromium, molybdenum, tungsten, manganese, rhenium, tin, lead, zinc, mercury, and titanium. [Pg.368]

A number of binuclear phosphine-ligand bridged complexes have been shown to function as catalysts or catalyst precursors. Here we review these cases briefly. More detailed coverage of hydrogenation and hydroformyla-tion using rhodium catalysts will appear in the next chapter. In all cases of catalytic activity shown by binuclear complexes, there is a serious question about the true identity of the catalytically active species. As with catalysis begun by metal carbonyl clusters, the possibility exists that a small amount of highly active mononuclear compound is the true catalyst. [Pg.206]

First, for reasons of clarity, the currently-accepted mechanism of transition-metal complex catalyzed-hydrosilylation reactions will be described briefly. Furthermore, consideration of selective, if not asymmetric, reduction of certain carbonyl compounds by way of rhodium(I)-catalyzed hydrosilylation (Section 4) is included in this review because the catalytic process and stereochemical course of this reaction correlate closely with those of their asymmetric reduction under similar conditions that will be described in the succeeding section. [Pg.187]

Carbonylation and decarbonylation reactions of alkyl complexes in catalytic cycles have been reviewed . A full account of the carbonylation and homologation of formic and other carboxylic acid esters catalysed by Ru/CO/I systems at 200 C and 150-200 atm CO/H2 has appeared. In a novel reaction, cyclobutanones are converted to disiloxycyclopentenes with hydrosilane and CO in the presence of cobalt carbonyl (reaction 4) . The oxidative addition of Mel to [Rh(CO)2l2] in aprotic solvents (MeOH, CHCI3, THF, MeOAc), the rate determining step in carbonylation of methyl acetate and methyl halides, is promoted by iodides, such as Bu jN+I", and bases (eg 1-methylimidazole) . A further kinetic study of rhodium catalysed methanol carbonylation has appeared . The carbonylation of methanol by catalysts prepared by deposition of Rh complexes on silica alumina or zeolites is comparable with the homogeneous analogue . [Pg.383]

P.W.N.M. van Leeuwen and Z. Freixa (2007) in Comprehensive Organometallic Chemistry III, eds R.H. Crabtree and D.M.P. Mingos, Elsevier, Oxford, vol. 7, p. 237 - Application of rhodium complexes in homogeneous catalysis with carbon monoxide A review of Rh-based homogeneous catalysts in the hydroformyla-tion of aUcenes and carbonylation of methanol. [Pg.970]


See other pages where Rhodium carbonyl complexes review is mentioned: [Pg.147]    [Pg.163]    [Pg.4083]    [Pg.656]    [Pg.23]    [Pg.4082]    [Pg.33]    [Pg.567]    [Pg.39]    [Pg.411]    [Pg.201]    [Pg.65]    [Pg.55]    [Pg.127]    [Pg.813]    [Pg.194]    [Pg.174]    [Pg.3773]    [Pg.657]    [Pg.72]    [Pg.353]    [Pg.554]    [Pg.3772]    [Pg.174]    [Pg.371]    [Pg.1299]    [Pg.1304]    [Pg.6]    [Pg.316]    [Pg.382]    [Pg.210]    [Pg.48]   
See also in sourсe #XX -- [ Pg.27 , Pg.31 , Pg.57 ]




SEARCH



Reviews carbonylation

Rhodium carbonyl complexes

Rhodium carbonylation

Rhodium carbonyls

© 2024 chempedia.info