Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reviews of acetals

Fife Zhang J. Org. Chern. 1986, 51, 3744. See also Fife Zhang Tetrahedron Leu. 1986, 27, 4933, 4937. For a review of acetic formic anhydride see Strazzolini Giumanini Cauci Tetrahedron 1998, 46 1081-1118. [Pg.401]

A large variety of organic oxidations, reductions, and rearrangements show photocatalysis at interfaces, usually of a semiconductor. The subject has been reviewed [326,327] some specific examples are the photo-Kolbe reaction (decarboxylation of acetic acid) using Pt supported on anatase [328], the pho-... [Pg.738]

The fermentative fixing of CO2 and water to acetic acid by a species of acetobacterium has been patented acetyl coen2yme A is the primary reduction product (62). Different species of clostridia have also been used. Pseudomonads (63) have been patented for the fermentation of certain compounds and their derivatives, eg, methyl formate. These methods have been reviewed (64). The manufacture of acetic acid from CO2 and its dewatering and refining to glacial acid has been discussed (65,66). [Pg.69]

Ca.ta.lysis, The readily accessible +1 and +3 oxidation states of rhodium make it a useful catalyst. There are several reviews of the catalytic properties of rhodium available (130—132). Rhodium-catalyzed methanol carbonylation (Monsanto process) accounted for 81% of worldwide acetic acid by 1988 (133). The Monsanto acetic acid process is carried out at 175°0 and 1.5 MPa (200 psi). Rhodium is introduced as RhCl3 but is likely reduced in a water... [Pg.180]

Besides direct hydrolysis, heterometaHic oxoalkoxides may be produced by ester elimination from a mixture of a metal alkoxide and the acetate of another metal. In addition to their use in the preparation of ceramic materials, bimetallic oxoalkoxides having the general formula (RO) MOM OM(OR) where M is Ti or Al, is a bivalent metal (such as Mn, Co, Ni, and Zn), is 3 or 4, and R is Pr or Bu, are being evaluated as catalysts for polymerization of heterocychc monomers, such as lactones, oxiranes, and epoxides. An excellent review of metal oxoalkoxides has been pubUshed (571). [Pg.164]

An intermolecular carbenoid reaction followed by intramolecular displacement of acetate gives the clavulanic acid derivative (112) in one step from 4-acetoxyazetidin-2-one (91) (80CC1257). Carbene-induced reactions of penicillins and cephalosporins have been reviewed (75S547, 78T1731). [Pg.254]

Retinyl acetate [127-47-9] M 328.5, m 57". Separated from retinol by column chromatography, then crystd from MeOH. See Kofler and Rubin [Vitamins and Hormones (NY) 18 315 1960] for review of purification methods. Stored in the dark, under N2 or Ar, at 0°. See Vitamin A acetate p. 574 in Chapter 6. [Pg.348]

This chapter lists some representative examples of biochemicals and their origins, a brief indication of key techniques used in their purification, and literature references where further details may be found. Simpler low molecular weight compounds, particularly those that may have been prepared by chemical syntheses, e.g. acetic acid, glycine, will be found in Chapter 4. Only a small number of enzymes and proteins are included because of space limitations. The purification of some of the ones that have been included has been described only briefly. The reader is referred to comprehensive texts such as the Methods Enzymol (Academic Press) series which currently runs to more than 344 volumes and The Enzymes (3rd Edn, Academic Press) which runs to 22 volumes for methods of preparation and purification of proteins and enzymes. Leading referenees on proteins will be found in Advances in Protein Chemistry (59 volumes. Academic Press) and on enzymes will be found in Advances in Enzymology (72 volumes, then became Advances in Enzymology and Related Area of Molecular Biology, J Wiley Sons). The Annual Review of Biochemistry (Annual Review Inc. Patio Alto California) also is an excellent source of key references to the up-to-date information on known and new natural compounds, from small molecules, e.g. enzyme cofactors to proteins and nucleic acids. [Pg.504]

An extensive review of the chemistry of 0,5-acetals has been published. ... [Pg.345]

Comforth has reviewed literature reports and independently studied the special cases of reaction of 1 with salicylaldehyde and with 2-acetoxybenzaldehyde. Coumarins (10) are afforded in the condensation of 1 with salicylaldehyde or its imine, whereas when 2-acetoxybenzaldehyde is used, acetoxy oxazolone 12 is the major product. The initial aldol condensation product between the oxazolone and 2-acetoxybenzaldehyde is the 4-(a-hydroxybenzyl)oxazolone 11, in which base-catalyzed intramolecular transacetylation is envisioned. The product 9 (R = Ac) can either be acetylated on the phenolic hydroxy group, before or after loss of acetic acid, to yield the oxazolone 12, or it can rearrange, by a second intramolecular process catalyzed by base and acid, to the hydrocoumarin, which loses acetic acid to yield 10. When salicylaldehyde is the starting material, aldol intermediate 9 (R = H) can rearrange directly to a hydrocoumarin. Comforth also accessed pure 4-(2 -hydroxyphenylmethylene)-2-phenyloxazol-5(4//)-one (13) through hydrolysis of 12 with 88% sulfuric acid. [Pg.230]

This section is completed with a brief review of the synthesis and properties of this epimer (20) of the precursor of thiazole in bacteria. This pentulose is conveniently accessible by an unconventional route (Scheme 19). Methyl 2,3 4,6-di-O-isopropylidene-a-D-mannopyranoside, readily available from methyl ot-D-mannopyranoside, is converted to the ketonic glycoside by butyllithium in 91% yield, following a method first published by Klemer and Rodemeyer43 and scaled up by Horton and Weckerle.44 This was converted by means of lithium hydroxide in a water-ether mixture into 3,5-0-benzylidene-l-deoxy-D-eryf/iro-2-pen-tulose in 55% yield. Hydrolysis to the free pentulose (20) proceeded in 73% yield in aqueous acetic acid. This product was obtained as a syrup with a characteristic absorption band at 1705 cm 1 as a film. Thus, there is a fair proportion of the open-chain ketone under these conditions, as with the D-threo epimer.45... [Pg.288]

Extraction of Sodium Channel Blockers. A review of published reports shows that methods for purification of sodium channel blockers from bacterial cultures are similar to techniques for isolation of TTX and STX from pufferfish and dinoflagellates (30, 31, 38, 39). Typically, cell pellets of bacterial cultures are extracted with hot 0.1% acetic acid, the resulting supernatant ultra-filtered, lyo-philized, and reconstituted in a minimal volume of 0.1% acetic acid. Culture media can also be extracted for TTX by a similar procedure (Ji). Both cell and supernatant extracts are analyzed further by gel filtration chromatography and other biological, chemical, and immunological methods. Few reports describe purification schemes that include extraction of control samples of bacteriological media (e.g., broths and agars) which may be derived from marine plant and animal tissues. [Pg.79]

The presence of ligands, either in the form of added anions such as acetate or as co-solvents or solvents, such as pyridine, markedly affect the kinetics. In pyridine or dodecylamine solvents the hydrogenation of Ag(I) acetate follows simple second-order kinetics, as does that of Cu(I) acetate. This behaviour is also shown in aqueous solutions by Ag(I) in the presence of acetate ions and by an ethylenediamine complex of Ag(I) . The rate of hydrogenation of Cu(II) acetate, on the other hand, is independent of oxidant concentration. The rate of oxidation of hydrogen by Cu(II) acetate in quinoline is also independent of oxidant concentration , but does depend on the square of the concentration of cuprous acetate which acts as a catalyst. For further details of these complicating features, reference should be made to the original papers and to Hal-pern s review ... [Pg.421]

The most critical decision to be made is the choice of the best solvent to facilitate extraction of the drug residue while minimizing interference. A review of available solubility, logP, and pK /pKb data for the marker residue can become an important first step in the selection of the best extraction solvents to try. A selected list of solvents from the literature methods include individual solvents (n-hexane, " dichloromethane, ethyl acetate, acetone, acetonitrile, methanol, and water ) mixtures of solvents (dichloromethane-methanol-acetic acid, isooctane-ethyl acetate, methanol-water, and acetonitrile-water ), and aqueous buffer solutions (phosphate and sodium sulfate ). Hexane is a very nonpolar solvent and could be chosen as an extraction solvent if the analyte is also very nonpolar. For example, Serrano et al used n-hexane to extract the very nonpolar polychlorinated biphenyls (PCBs) from fat, liver, and kidney of whale. One advantage of using n-hexane as an extraction solvent for fat tissue is that the fat itself will be completely dissolved, but this will necessitate an additional cleanup step to remove the substantial fat matrix. The choice of chlorinated hydrocarbons such as methylene chloride, chloroform, and carbon tetrachloride should be avoided owing to safety and environmental concerns with these solvents. Diethyl ether and ethyl acetate are other relatively nonpolar solvents that are appropriate for extraction of nonpolar analytes. Diethyl ether or ethyl acetate may also be combined with hexane (or other hydrocarbon solvent) to create an extraction solvent that has a polarity intermediate between the two solvents. For example, Gerhardt et a/. used a combination of isooctane and ethyl acetate for the extraction of several ionophores from various animal tissues. [Pg.305]

The most frequently encountered hydrolysis reaction in drug instability is that of the ester, but curtain esters can be stable for many years when properly formulated. Substituents can have a dramatic effect on reaction rates. For example, the tert-butyl ester of acetic acid is about 120 times more stable than the methyl ester, which, in turn, is approximately 60 times more stable than the vinyl analog [16]. Structure-reactivity relationships are dealt with in the discipline of physical organic chemistry. Substituent groups may exert electronic (inductive and resonance), steric, and/or hydrogen-bonding effects that can drastically affect the stability of compounds. A detailed treatment of substituent effects can be found in a review by Hansch et al. [17] and in the classical reference text by Hammett [18]. [Pg.149]

Cohne AJ, Roe FJC. 1991. Review of lead toxicology relevant to the safety assessment of lead acetate as a hair colouring. Fd Chem Toxic 29(7) 485-507. [Pg.503]

A review of chiral acetals in asymmetric synthesis is available.102... [Pg.107]


See other pages where Reviews of acetals is mentioned: [Pg.620]    [Pg.242]    [Pg.1422]    [Pg.135]    [Pg.620]    [Pg.242]    [Pg.1422]    [Pg.135]    [Pg.278]    [Pg.314]    [Pg.172]    [Pg.37]    [Pg.1637]    [Pg.177]    [Pg.666]    [Pg.354]    [Pg.296]    [Pg.527]    [Pg.986]    [Pg.23]    [Pg.134]    [Pg.84]    [Pg.120]    [Pg.607]    [Pg.655]    [Pg.835]    [Pg.1143]    [Pg.1283]    [Pg.218]    [Pg.240]    [Pg.438]    [Pg.152]    [Pg.240]    [Pg.39]    [Pg.262]    [Pg.878]   
See also in sourсe #XX -- [ Pg.177 ]




SEARCH



Reviews Concerning Acetal Derivatives of Carbohydrates

Reviews Concerning the Preparation of 0,0-Acetals and Their Use as Protecting Groups

© 2024 chempedia.info