Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reversed phases, surfactants

Naphthalenedisulfonate-acetonitrile as the only mobile phase with a silica column coated with a crosslinked aminofluorocarbon polymer has proven to be an effective combination for the separation of aliphatic anionic surfactants. Indirect conductivity and photometric detection modes are used to monitor these analytes. The retention of these surfactants is found to depend on both the ionic strength and the organic solvent content of the mobile phase. The mechanism of retention is considered to be a combination of both reverse phase and ion exchange processes. Selective separation of both alkanesulfonates and... [Pg.168]

Manufacture of highly water-absorbent polymers with uniform particle size and good flowability can be carried out by reverse phase suspension polymerization of (meth)acrylic acid monomers in a hydrocarbon solvent containing crosslinker and radical initiator. Phosphoric acid monoester or diester of alka-nole or ethoxylated alkanole is used as surfactant. A polymer with water-absorbent capacity of 78 g/g polymer can be obtained [240]. [Pg.605]

We will show several examples of the use of 2DLC for nonionic surfactants. The resulting resolution can be dramatically different depending on the two separation modes in the 2DLC system. As discussed previously, the separation of the hydrophobic groups can be accomplished with a reversed-phase column, and the separation of the... [Pg.434]

Jandera, P., Urbanek, J. (1995). Comparison of chromatographic behavior of oligoethylene glycol nonylphenyl ether non-ionic and anionic surfactants in reversed-phase high-performance liquid chromatography. J. Chromatogr. A 689(2), 255-267. [Pg.444]

Jandera, P., Holcapek, M., Theodoridis, G. (1998). Investigation of chromatographic behavior of alcohol ethoxylate surfactants in normal-phase and reversed-phase systems using high-performance liquid chromatography-mass spectrometry. J. Chromatogr. A 813(2), 299-311. [Pg.444]

Mengerink, Y., De Man, H.C.J., Van der Wal, S. (1991). Use of an evaporative light scattering detector in reversed-phase high-performance liquid chromatography of oligomeric surfactants. J. Chromatogr. A 552(1-2), 593-604. [Pg.444]

Parris, N., Linfield, W.M., Barford, R.A. (1977). Determination of sulfobetaine amphoteric surfactants by reverse phase high performance liquid chromatography. Anal. Chem. 49(14), 2228-2231. [Pg.444]

Schroder, H.E (2003). Determination of fluorinated surfactants and their metabolites in sewage sludge samples by liquid chromatography with mass spectrometry and tandem mass spectrometry after pressurized liquid extraction and separation on fluorine-modified reversed-phase sorbents. J. Chromatogr. A 1020(1), 131-151. [Pg.445]

Steinbrech, B., Neugebauer, D., Zulauf, G. (1986). Determination of surfactants by liquid chromatography (HPLC). Reversed phase ion-pair chromatography of alkyl sulfates and alkyl sulfosuccinates. Analytische Chemie 324(2), 154—157. [Pg.445]

Zhu, J., Shi, Z. (2003). ESI-MS studies of polyether surfactant behaviors in reversed-phase HPLC system. Int. J. Mass Spectrom. 226(3), 369-378. [Pg.446]

In reverse, the surfactant precipitates from solution as a hydrated crystal at temperatures below 7k, rather than forming micelles. For this reason, below about 20 °C, the micelles precipitate from solution and (being less dense than water) accumulate on the surface of the washing bowl. We say the water and micelle phases are immiscible. The oils re-enter solution when the water is re-heated above the Krafft point, causing the oily scum to peptize. The way the micelle s solubility depends on temperature is depicted in Figure 10.14, which shows a graph of [sodium decyl sulphate] in water (as y ) against temperature (as V). [Pg.520]

In order to study simultaneously the behaviour of parent priority surfactants and their degradation products, it is essential to have accurate and sensitive analytical methods that enable the determination of the low concentrations generally occurring in the aquatic environment. As a result of an exhaustive review of the analytical methods used for the quantification within the framework of the three-year research project Priority surfactants and their toxic metabolites in wastewater effluents An integrated study (PRISTINE), it is concluded that the most appropriate procedure for this purpose is high-performance (HP) LC in reversed phase (RP), associated with preliminary techniques of concentration and purification by solid phase extraction (SPE). However, the complex mixtures of metabolites and a lack of reference standards currently limit the applicability of HPLC with UV- or fluorescence (FL-) detection methods. [Pg.25]

The recent use of HPLC for the analysis of sulfophenyl carboxylates (SPCs) has been one of the most interesting applications of this technique for the study of the environmental behaviour of anionic surfactants. SPCs are separated by reversed-phase ion-paired chromatography, in which a hydrophobic stationary phase is used and the mobile phase is eluted with aqueous buffers containing a low concentration of the counter-ion [19]. [Pg.120]

Aliphatic AEOs, considered as environmentally safe surfactants, are the most extensively used non-ionic surfactants. The commercial mixtures consist of homologues with an even number of carbon atoms ranging typically from 12 to 18 or of a mixture of even-odd linear and a-substituted alkyl chains with 11—15 carbons. Furthermore, each homologue shows an ethoxymer distribution accounting typically for 1—30 ethoxy units with an average ethoxylation number in the range 5—15. The separation of the AEO complex mixtures was achieved by reversed-phase and normal-phase chromatographic systems [74—76]. [Pg.132]

In one study, however, atmospheric pressure chemical ionisation (APCI)-MS was applied for the simultaneous determination of LAS and octylphenol ethoxylates (OPEO) in surface waters after preconcentration by solid-phase extraction (SPE) on Cis cartridges [1]. In the chromatogram from a Ci-reversed phase (RP) column, peaks arising from both the anionic LAS and the non-ionic OPEO were detected after positive ionisation, while in negative ionisation mode, OPEO were discriminated and only the anionic surfactant was observed. Surprisingly, the relative sensitivity for detection of LAS was approximately five times higher in positive ion mode, which led the authors to the conclusion that this ionisation mode was desirable for quantitative work. [Pg.318]

The components of a technical cocamidopropyl betaine (CAPB Fig. 2.13.1) mixture were separated under reversed phase conditions in the order of increasing length of the alkyl chain (Fig. 2.13.2) [1]. Since the hydrophobic moiety of the surfactant molecule is derived from coconut oil, the two homologues Ci2 and C14 form the major constituents according to the distribution in the natural raw product containing approximately 49% of Ci2- and 19% of C14-fatty acid [2],... [Pg.414]

In matrix solid-phase dispersion (MSPD) the sample is mixed with a suitable powdered solid-phase until a homogeneous dry, free flowing powder is obtained with the sample dispersed over the entire material. A wide variety of solid-phase materials can be used, but for the non-ionic surfactants usually a reversed-phase C18 type of sorbent is applied. The mixture is subsequently (usually dry) packed into a glass column. Next, the analytes of interest are eluted with a suitable solvent or solvent mixture. The competition between reversed-phase hydrophobic chains in the dispersed solid-phase and the solvents results in separation of lipids from analytes. Separation of analytes and interfering substances can also be achieved if polarity differences are present. The MSPD technique has been proven to be successful for a variety of matrices and a wide range of compounds [43], thanks to its sequential extraction matrices analysed include fish tissues [44,45] as well as other diverse materials [46,47]. [Pg.464]

Indications for the formation of analogous species in microbial metabolism of LAS were found by Knepper and Kruse [33] during biotransformation of commercial LAS surfactant on an FBBR. However, the low concentrations of the tentative metabolites in the test liquor, which eluted under the applied reversed-phase (RP)-HPLC conditions somewhat earlier than the normal SPC, did not permit acquisition of full-scan mass spectra as was needed for unequivocal identification. Further evidence for the formation of the intermediate with a double bond in the alkanoate moiety was reported by Bird [103]. During biodegradation of Cn-LAS by a bacterial strain, a new UV adsorption band centred near 260 nm was detected, which was assumed to result from a double bond, although a definite confirmation could not be provided. [Pg.573]


See other pages where Reversed phases, surfactants is mentioned: [Pg.377]    [Pg.284]    [Pg.493]    [Pg.461]    [Pg.463]    [Pg.443]    [Pg.720]    [Pg.210]    [Pg.693]    [Pg.228]    [Pg.251]    [Pg.257]    [Pg.274]    [Pg.542]    [Pg.109]    [Pg.398]    [Pg.426]    [Pg.427]    [Pg.433]    [Pg.44]    [Pg.146]    [Pg.64]    [Pg.125]    [Pg.134]    [Pg.192]    [Pg.212]    [Pg.261]    [Pg.427]    [Pg.521]   
See also in sourсe #XX -- [ Pg.3 , Pg.348 ]

See also in sourсe #XX -- [ Pg.3 , Pg.348 ]




SEARCH



Phase surfactant

Surfactant reverse

© 2024 chempedia.info