Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reverse hollow-fine-fiber

A second factor determining module selection is resistance to fouling. Membrane fouling is a particularly important problem in Hquid separations such as reverse osmosis and ultrafiltration. In gas separation appHcations, fouling is more easily controlled. Hollow-fine fibers are notoriously prone to fouling and can only be used in reverse osmosis appHcations if extensive, costiy feed-solution pretreatment is used to remove ah. particulates. These fibers caimot be used in ultrafiltration appHcations at ah. [Pg.74]

In reverse osmosis, most modules are of the hollow-fine fiber or spiral-wound design plate-and-frame and tubular modules are limited to a few appHcations in which membrane fouling is particularly severe, for example, food appHcations or processing of heavily contaminated industrial wastewater. [Pg.74]

Data of WRPC. The Water Reuse Promotion Center(WRPC) in JAPAN has been engaged in development of sea water desalination by reverse osmosis since 197. At IDEA meeting at Mexico city 1976,the first redults were reported with two types of modules, du Dont hollow fine fiber module B-10 and UOP s cellulose triacetate ultrathin spiral wound module,tested at their laboratory at Chigasaki beach. Then the WRPC has adopted two types of modules made in Japan, Toray new type of spiral wound module made from cellulose acetate and Toyobo s cellulose triacetate hollow fine fiber module. [Pg.116]

The types of hollow fiber membranes in production are illustrated in Figure 3.32. Fibers of 50- to 200-p.m diameter are usually called hollow fine fibers. Such fibers can withstand very high hydrostatic pressures applied from the outside, so they are used in reverse osmosis or high-pressure gas separation applications in which the applied pressure can be 1000 psig or more. The feed fluid is applied to the outside (shell side) of the fibers, and the permeate is removed down the fiber bore. When the fiber diameter is greater than 200-500 xm, the feed fluid is commonly applied to the inside bore of the fiber, and the permeate is removed from the outer shell. This technique is used for low-pressure gas separations and for applications such as hemodialysis or ultrafiltration. Fibers with a diameter greater than 500 xm are called capillary fibers. [Pg.133]

As Figure 5.12 shows, Toray s PEC-1000 crosslinked furfuryl alcohol membrane has by far the best sodium chloride rejection combined with good fluxes. This explains the sustained interest in this membrane despite its extreme sensitivity to dissolved chlorine and oxygen in the feed water. Hollow fine fiber membranes made from cellulose triacetate by Toyobo or aromatic polyamides by Permasep (Du Pont) are also comfortably in the one-stage seawater desalination performance range, but the water fluxes of these membranes are low. However, because large-surface-area, hollow fine fiber reverse osmosis modules can be... [Pg.206]

FIG. 22-50 Cutaway view of high-pressure hollow-fine-fiber reverse-osmosis module. Courtesy DuPont.)... [Pg.1784]

Since the first cellulose-acetate membrane was made, and the hollow fine fiber was introduced, very few new membranes for reverse osmosis have been brought on the market. [Pg.212]

During the 1960 s, the DuPont Company screened numerous polymers to determine the suitability of materials other than cellulose acetate for use in reverse osmosis desalination. The results of this work indicated that aromatic polyamides were the "choice as the best polymer type for use in the DuPont commercial permeators".7 The company was most successful in developing an asymmetric aromatic polyamide reverse osmosis membrane in a hollow fine fiber configuration which successfully competed with cellulose acetate in the market place. [Pg.271]

Reverse osmosis membrane is produced in sheet form-up to 60 inches wide and lengths up to 1,500 feet-and as a hollow fine fiber. The asymmetric cellulose acetate was originally produced as a sheet and later as a hollow fine fiber. The asymmetric aromatic polyamide was originally produced as a hollow fine fiber and later in sheet form. The composite membranes with polyamide or polyurea membrane barrier layers are produced in sheet form as of the end of 1987, but research has been and will continue to be done to produce the composite reverse osmosis membranes as a hollow fine fiber. [Pg.274]

Once the pretreatment study had been completed, it will be possible to decide on the type of elements to be used in the reverse osmosis unit. If the SDI of the pretreated feed is 3.0 or less, then either the spiral wound or hollow fine fiber elements can be used. The choice will depend on economics (element price) and desalination characteristics (flux and rejection). If the pretreated feed SDI is more than 3.0, then the spiral wound element should be used. When the decision as to element type is made, then it is appropriate to forward a copy of the pretreated feed water analysis to reverse osmosis element manufacturers to obtain a prediction of product water quality, recommended type of element, total number of elements required, possible problems with sparingly soluble compounds in the feedwater, allowable recovery, and price and delivery. [Pg.286]

Figure 12-5. Du Font s hollow, fine-fiber Permasep permeator for reverse-osmosis water desalination. Figure 12-5. Du Font s hollow, fine-fiber Permasep permeator for reverse-osmosis water desalination.
The key to the reverse osmosis (RO) process is a suitable semipermeable membrane. Improvements in membrane technology now mean that the process can apply to industrial-scale plants. Common contemporary membrane selections are made of cellulose-based polymer or a polyamide layer applied to a microporous poljmier fllm. This membrane is bonded to a porous polyester sheet for structural stiffiiess. This composite is rolled into a spiral. Spun hollow fine fibers are the finished product. The semipermeable layer is on the outside of the fibers. The total thickness of the composite is about 24 pm. The outside diameter of the tube is about 95 pm, making for a large surface area for rejecting salt. The fibers are made into bundles that are sealed with epo in a fiberglass pressure container. [Pg.225]

Hollow-fiber designs are being displaced by spiral-wound modules, which are inherently more fouling resistant, and require less feed pretreatment. Also, thin-film interfacial composite membranes, the best reverse osmosis membranes available, have not been fabricated in the form of hoUow-fine fibers. [Pg.75]

Filtration can remove fine suspended solids and microorganisms, and microfiltration membranes of cellulose acetate or polyamides are available that have pores 0.1-20 /xm in diameter. Clogging of such fine filters is an ever-present problem, and it is usual to pass the water through a coarser conventional filter first. Ultrafiltration with membranes having pores smaller than 0.1 fim requires application of pressures of a few bars to keep the membrane surface free of deposits, water flows parallel to the membrane surfaces, with only a small fraction passing through the membrane. The membranes typically consist of bundles of hollow cellulose acetate or polyamide fibers set in a plastic matrix. Ultrafiltration bears some resemblance to reverse osmosis technology, described in Section 14.4, with the major difference that reverse osmosis can remove dissolved matter, whereas ultrafiltration cannot. [Pg.265]

To overcome the problems of cellulose acetate membranes, many synthetic polymeric materials for reverse osmosis were proposed, but except for one material, none of them proved successful. The only one material, which could remain on the market, was the linear aromatic polyamide with pendant sulfonic acid groups, as shown in Figure 1.2. This material was proposed by DuPont, which fabricated very fine hollow fiber membranes the modules of this membrane were designated B-9 and B-10. They have a high rejection performance, which can be used for single-stage seawater desalination. They were widely used for mainly seawater or brackish water desalination and recovery of valuable materials such as electric deposition paints, until DuPont withdrew them from the market in 2001. [Pg.7]


See other pages where Reverse hollow-fine-fiber is mentioned: [Pg.60]    [Pg.80]    [Pg.2228]    [Pg.3]    [Pg.134]    [Pg.134]    [Pg.191]    [Pg.219]    [Pg.1984]    [Pg.279]    [Pg.300]    [Pg.2232]    [Pg.309]    [Pg.4480]    [Pg.4481]    [Pg.4492]    [Pg.371]    [Pg.998]    [Pg.253]   
See also in sourсe #XX -- [ Pg.309 ]




SEARCH



Fiber hollow

Hollow fine fiber

© 2024 chempedia.info