Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Resins, synthetic, adsorption

Adsorption. Some organics are not removed in biological systems operating under normal conditions. Removal of residual organics can be achieved by adsorption. Both activated carbon and synthetic resins are used. As described earlier under pretreatment methods, regeneration of the activated carbon in a furnace can cause carbon losses of perhaps 5 to 10 percent. [Pg.319]

In contrast to trace impurity removal, the use of adsorption for bulk separation in the liquid phase on a commercial scale is a relatively recent development. The first commercial operation occurred in 1964 with the advent of the UOP Molex process for recovery of high purity / -paraffins (6—8). Since that time, bulk adsorptive separation of liquids has been used to solve a broad range of problems, including individual isomer separations and class separations. The commercial availability of synthetic molecular sieves and ion-exchange resins and the development of novel process concepts have been the two significant factors in the success of these processes. This article is devoted mainly to the theory and operation of these Hquid-phase bulk adsorptive separation processes. [Pg.291]

New areas in adsorption technology include carbonaceous and polymeric resins (3). Based on synthetic organic polymer materials, these resins may find special uses where compound selectivity is important, low effluent concentrations are required, carbon regeneration is impractical, or the waste to be treated contains high levels of inorganic dissolved soHds. [Pg.161]

Adsorption beds of activated carbon for the purification of citric acid, and adsorption of organic chemicals by charcoal or porous polymers, are good examples of ion-exchange adsorption systems. Synthetic resins such as styrene, divinylbenzene, acrylamide polymers activated carbon are porous media with total surface area of 450-1800 m2-g h There are a few well-known adsorption systems such as isothermal adsorption systems. The best known adsorption model is Langmuir isotherm adsorption. [Pg.185]

Certain types of adsorption media have been shown to preferentially adsorb certain contaminants. For example, research has shown that, in some cases, coconut shell-based GAC removes MTBE better than typical coal-based GAC. In addition, synthetic resins have been developed to preferentially adsorb some oxygenates, such as TBA, that are less absorbable by GAC. Often, adsorption processes also take advantage of the biodegradability of MTBE and other oxygenates by promoting bacterial growth on the adsorption. [Pg.1039]

Adsorption—Ether-based oxygenates are less readily removed than BTEX using GAC and some alcohol-based oxygenates may not be adsorbable at all synthetic resins that more selectively remove fuel oxygenates are available. [Pg.1042]

Hirose and Sugimura [89] investigated the speciation of plutonium in seawater using adsorption of plutonium (IV)-xylenol orange and plutonium-arsenazo (III) complexes on the macroreticular synthetic resin XAD-2. Xylenol orange was selective for plutonium (IV) and arsenazo (III) for total plutonium. Plutonium levels were determined by a-ray spectrometry. [Pg.355]

Saturable dye absorber, 14 677 Saturated aqueous salt solution, 9 34 Saturated calomel electrode (SCE), 9 571 Saturated fatty acids, 10 829, 830 Saturated hydrocarbons adsorbent affinity, 1 674 adsorption by zeolites, 1 624 fluorine reactivity with, 11 831 isomerization of, 12 172—173 Saturated polyester resins, based on trimethylpentanediol, 12 673 Saturated polyesters, 10 7 Saturated synthetic rubber, 10 705 Saturation and coating processes, 10 12-13 Saturation bonding, 17 509-510 Saturation color, 19 262 Saturation concentration, 15 677 Saturation index... [Pg.820]

Adsorption by synthetic polymeric resins is an effective means for removing and recovering specific chemical compounds from wastewater. The operation is... [Pg.530]

Adsorption is a physical phenomenon in which some components adsorbates) in a fluid (liquid or gas) move to, and accumulate on, the surface of an appropriate solid adsorbent) that is in contact with the fluid. With the use of suitable adsorbents, desired components or contaminants in fluids can be separated. In bioprocesses, the adsorption of a component in a liquid is widely performed by using a variety of adsorbents, including porous charcoal, silica, polysaccharides, and synthetic resins. Such adsorbents of high adsorption capacities usually have very large surface areas per unit volume. The adsorbates in the fluids are adsorbed at the adsorbent surfaces due to van der Waals, electrostatic, biospecific, or other interactions, and thus become separated from the bulk of the fluid. In practice, adsorption can be performed either batchwise in mixing tanks, or continuously in fixed-bed or fluidized-bed adsorbers. In adsorption calculations, both equilibrium relationships and adsorption rates must be considered. [Pg.165]

In either approach, the selection of isolation (e.g., solvent extraction, adsorption on carbon and synthetic resins) and concentration (e.g., lyophilization, vacuum distillation, reverse osmosis, ultrafiltration) methods is of paramount importance in properly assessing the potential toxicity of waterborne organics. A comprehensive literature review on the development and application of these and other methods to biological testing has recently been published by Jolley (3). [Pg.456]

The parfait-distillation method uses a sequential series of adsorbents to remove contaminants from water and vacuum distillation to recover unadsorbed materials. This method recovers a wide range of neutral, cationic, anionic, and hydrophobic contaminants. The first adsorbent, porous polytetrafluoroethylene (PTFE), removed humic acid and a broad range of hydrophobic compounds. PTFE was followed by Dowex MSC-1 and then Duolite A-162 ion-exchange resins. A synthetic hard water spiked parts-per-billion concentrations with 20 model compounds was used to evaluate the method. Poorly volatile, neutral, water-soluble species (glucose) cationic aromatics and most hydro-phobic compounds were recovered quantitatively. Model ampho-terics were removed from the influent but were not recovered from the adsorption beds. The recovery of model acids and bases ranged from 22% to 70% of the amount applied. [Pg.489]

Chromosorb T shows the direct correlation of capacity with the oc-tanol-water partition coefficient expected of hydrophobic adsorbents (6). Its overall affinity for hydrophobic water contaminants is similar to that of Amberlite XAD-8 (Rohm and Haas), but it has additional affinity for humic acid and for water-soluble, cationic, aromatic dyes. Chromosorb T is more easily cleaned than the XAD resins, and it is more inert, contributing essentially no contaminants to eluates. Table IV illustrates the adsorption and recovery of a series of hydrophobic test solutes at 50 ppb in 8 L of synthetic hard water on a 50-mL bed of Chromosorb T. [Pg.500]

Despite the current success and popularity of polymer reagents, the availability of functional resins has been a severe limitation in recent years. For many synthetically important transformations, reliable reagents were not available. Moreover, polymer-assisted synthesis was usually restricted to small scale apphcations, and also suffered from the inherent limitations of the standard support material (e.g., cross-linked polystyrene) such as solvent incompatibihty, adsorption of reagents,14 or the chemical reactivity of the resin backbone. [Pg.370]

Binding enzymes to solid supports can be achieved via covalent bonds, ionic interactions, or physical adsorption, although the last two options are prone to leaching. Enzymes are easily bound to several types of synthetic polymers, such as acrylic resins, as well as biopolymers, e.g., starch, cellulose [52], or chitosan [53,54]. Degussa s Eupergit resins, for example, are used as enzyme carriers in the production of semisynthetic antibiotics and chiral pharmaceuticals [55], Typically, these copolymers contain an acrylamide/methacrylate backbone, with epoxide side groups... [Pg.202]

Synthetic organic chemicals have been isolated by either resin adsorption or direct methylene chloride liquid—liquid extraction. Analyses for 48 distinct chemical entities in river water from a river located in North Carolina s Piedmont area were carried out. The river was sampled at three locations several times during a 13-month period (41). Most frequendy included among the 48 chemicals found were atrazine, methyl atraton (triazine herbicides), dimethyl dioxane, 1,2,4-trichlorobenzene, tributylphosphate, triethylphosphate, trimethylindolinone, and tris(chloropropyl) phosphate. Many of these chemicals are indigenous to industrial and agricultural activities in Piedmont. The concentrations were in the ng/L to mg/L range. [Pg.243]

The data in Figure 12.24 show the potentiometric titrations of a metal-exchange synthetic resin (Dowex 50W-X8) known to produce relatively weak metal-surface complexes (outer-sphere complexes). These data show that when the resin was saturated with Ca2+, no titration plateau (region of Na+, NH4 or NH3 adsorption) was exhibited. When the resin was saturated with Cu2+, up to two titration plateaus were exhibited, depending on the type of titrant used. When NaOH was the titrant, one apparent titration plateau was exhibited, whereas when NH4OH was the titrant, two... [Pg.467]


See other pages where Resins, synthetic, adsorption is mentioned: [Pg.312]    [Pg.162]    [Pg.292]    [Pg.133]    [Pg.17]    [Pg.193]    [Pg.587]    [Pg.59]    [Pg.225]    [Pg.531]    [Pg.200]    [Pg.289]    [Pg.20]    [Pg.21]    [Pg.206]    [Pg.294]    [Pg.294]    [Pg.520]    [Pg.521]    [Pg.40]    [Pg.55]    [Pg.486]    [Pg.321]    [Pg.23]    [Pg.129]    [Pg.141]    [Pg.277]   
See also in sourсe #XX -- [ Pg.141 ]




SEARCH



Resin adsorption

Synthetic resins

Synthetic resins, specific adsorption

© 2024 chempedia.info