Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Resin theory

STEAM EXPANSION OF EPS LOOSE-FILL RESIN THEORY AND PRACTICE... [Pg.194]

In contrast to trace impurity removal, the use of adsorption for bulk separation in the liquid phase on a commercial scale is a relatively recent development. The first commercial operation occurred in 1964 with the advent of the UOP Molex process for recovery of high purity / -paraffins (6—8). Since that time, bulk adsorptive separation of liquids has been used to solve a broad range of problems, including individual isomer separations and class separations. The commercial availability of synthetic molecular sieves and ion-exchange resins and the development of novel process concepts have been the two significant factors in the success of these processes. This article is devoted mainly to the theory and operation of these Hquid-phase bulk adsorptive separation processes. [Pg.291]

Other theories proposed dissipation of energy through crack interaction localised heating causing the material to be raised to above the glass transition temperature in the layers of resin between the rubber droplets and a proposal that extension causes dilation so that the free volume is increased and the glass transition temperature drops to below the temperature of the polyblend. [Pg.56]

Phenolic resins were the first totally synthetic plastics invented. They were commercialized by 1910 [I]. Their history begins before the development of the structural theory of chemistry and even before Kekule had his famous dreams of snakes biting their tails. It commences with Gerhardt s 1853 observations of insoluble resin formation while dehydrating sodium salicylate [2]. These were followed by similar reports on the behavior of salicylic acid derivatives under a variety of reaction conditions by Schroder et al. (1869), Baeyer (1872), Velden (1877), Doebner (1896 and 1898), Speyer (1897) and Baekeland (1909-1912) [3-17]. Many of these early reports appear to involve the formation of phenolic polyesters rather than the phenol-aldehyde resins that we think of today. For... [Pg.869]

Theory. The anion exchange resin, originally in the chloride form, is converted into the nitrate form by washing with sodium nitrate solution. A concentrated solution of the chloride and bromide mixture is introduced at the top of the column. The halide ions exchange rapidly with the nitrate ions in the resin, forming a band at the top of the column. Chloride ion is more rapidly eluted from this band than bromide ion by sodium nitrate solution, so that a separation is possible. The progress of elution of the halides is followed by titrating fractions of the effluents with standard silver nitrate solution. [Pg.209]

Theory. Cadmium and zinc form negatively charged chloro-complexes which are absorbed by a strongly basic anion exchange resin, such as Duolite A113. The maximum absorption of cadmium and zinc is obtained in 0.12 M hydrochloric acid containing 100 g of sodium chloride per litre. The zinc is eluted quantitatively by a 2M sodium hydroxide solution containing 20 g of sodium chloride per litre, while the cadmium is retained on the resin. Finally, the cadmium is eluted... [Pg.210]

Theory. Conventional anion and cation exchange resins appear to be of limited use for concentrating trace metals from saline solutions such as sea water. The introduction of chelating resins, particularly those based on iminodiacetic acid, makes it possible to concentrate trace metals from brine solutions and separate them from the major components of the solution. Thus the elements cadmium, copper, cobalt, nickel and zinc are selectively retained by the resin Chelex-100 and can be recovered subsequently for determination by atomic absorption spectrophotometry.45 To enhance the sensitivity of the AAS procedure the eluate is evaporated to dryness and the residue dissolved in 90 per cent aqueous acetone. The use of the chelating resin offers the advantage over concentration by solvent extraction that, in principle, there is no limit to the volume of sample which can be used. [Pg.212]

Suspension Model of Interaction of Asphaltene and Oil This model is based upon the concept that asphaltenes exist as particles suspended in oil. Their suspension is assisted by resins (heavy and mostly aromatic molecules) adsorbed to the surface of asphaltenes and keeping them afloat because of the repulsive forces between resin molecules in the solution and the adsorbed resins on the asphaltene surface (see Figure 4). Stability of such a suspension is considered to be a function of the concentration of resins in solution, the fraction of asphaltene surface sites occupied by resin molecules, and the equilibrium conditions between the resins in solution and on the asphaltene surface. Utilization of this model requires the following (12) 1. Resin chemical potential calculation based on the statistical mechanical theory of polymer solutions. 2. Studies regarding resin adsorption on asphaltene particle surface and... [Pg.452]

One major question of interest is how much asphaltene will flocculate out under certain conditions. Since the system under study consist generally of a mixture of oil, aromatics, resins, and asphaltenes it may be possible to consider each of the constituents of this system as a continuous or discrete mixture (depending on the number of its components) interacting with each other as pseudo-pure-components. The theory of continuous mixtures (24), and the statistical mechanical theory of monomer/polymer solutions, and the theory of colloidal aggregations and solutions are utilized in our laboratories to analyze and predict the phase behavior and other properties of this system. [Pg.452]

Combination with oxygen. On the basis of the electronic theory of valency the meaning of the term has been extended to include all reactions in which there occurs an increase in the ratio of the electronegative to the electropositive atoms or groups of a substance. The controlled oxidation of natural rubber produces resinous substances called Rubbones. [Pg.45]


See other pages where Resin theory is mentioned: [Pg.325]    [Pg.20]    [Pg.20]    [Pg.123]    [Pg.123]    [Pg.123]    [Pg.36]    [Pg.363]    [Pg.504]    [Pg.56]    [Pg.724]    [Pg.361]    [Pg.404]    [Pg.415]    [Pg.419]    [Pg.424]    [Pg.426]    [Pg.777]    [Pg.464]    [Pg.208]    [Pg.383]    [Pg.198]    [Pg.189]    [Pg.192]    [Pg.195]    [Pg.200]    [Pg.19]    [Pg.135]    [Pg.312]    [Pg.14]    [Pg.258]    [Pg.60]    [Pg.451]    [Pg.12]    [Pg.280]    [Pg.28]    [Pg.140]   
See also in sourсe #XX -- [ Pg.701 ]




SEARCH



© 2024 chempedia.info