Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Relaxation techniques pressure jump

The p-jump method has several advantages over the t-jump technique. Pressure-jump measurements can be repeated at faster intervals than those with t-jump. With the latter, the solution temperature must return to its ini-lial value before another measurement can be conducted. This may take 5 min. With p-jump relaxation, one can repeat experiments every 0.5 min. One can also measure longer relaxation times with p-jump than with t-jump relax-mion. As noted earlier, one of the components of a t-jump experiment is It heat source such as Joule heating. Such high electric fields and currents can destroy solutions that contain biochemical compounds. Such problems lIo not exist with the p-jump relaxation method. [Pg.69]

The steady-state and rapid equilibrium kinetics do not give detailed information on the existence of multiple intermediates or on their lifetimes. Such information is provided by fast (or transient) kinetics. The methods can be divided in two categories rapid-mixing techniques (stopped-flow, rapid-scanning stopped-flow, quenched flow) which operate in a millisecond time scale and relaxation techniques (temperature jump, pressure jump) which monitor a transient reaction in a microsecond time scale. Most of the transient kinetic methods rely on spectrophotomet-rically observable substrate changes during the course of enzyme catalysis. [Pg.42]

Perturbation or relaxation techniques are applied to chemical reaction systems with a well-defined equilibrium. An instantaneous change of one or several state fiinctions causes the system to relax into its new equilibrium [29]. In gas-phase kmetics, the perturbations typically exploit the temperature (r-jump) and pressure (P-jump) dependence of chemical equilibria [6]. The relaxation kinetics are monitored by spectroscopic methods. [Pg.2118]

Knoche W and Wiese G 1976 Pressure-jump relaxation techniques with optical detection Rev. Sc/. Instrum.47 220-1... [Pg.2969]

Due to the fast kinetics of adsorption/desorption reactions of inorganic ions at the oxide/aqueous interface, few mechanistic studies have been completed that allow a description of the elementary processes occurring (half lives < 1 sec). Over the past five years, relaxation techniques have been utilized in studying fast reactions taking place at electrified interfaces (1-7). In this paper we illustrate the type of information that can be obtained by the pressure-jump method, using as an example a study of Pb2+ adsorption/desorption at the goethite/water interface. [Pg.114]

A possible explanation for the preference of living systems for the L (levorotatory) over the D (dextrorotatory) optical isomer may be associated with the stereoselective properties of layered minerals. To test this hypothesis, the rates of L- and D-histidine intercalation into HT layered compound was investigated using the pressure-jump relaxation technique (21). The rate constants and interlayer spacing based on this investigation are summarized in Table V. As shown the slightly enhanced rate for L-histidine suggests that relative chemical reactivity may be associated with natural selection of the L-form of amino acids in nature. [Pg.250]

Table III suggests some of the proton transfer kinetic studies one is likely to hear most about in the near future. The very first entry, colloidal suspensions, is one that Professor Langford mentioned earlier in these proceedings. In the relaxation field, one of the comparatively new developments has been the measurement of kinetics of ion transfer to and from colloidal suspensions. Yasunaga at Hiroshima University is a pioneer in this type of study (20, 21, 22). His students take materials such as iron oxides that form colloidal suspensions that do not precipitate rapidly and measure the kinetics of proton transfer to the colloidal particles using relaxation techniques such as the pressure-jump method. Table III suggests some of the proton transfer kinetic studies one is likely to hear most about in the near future. The very first entry, colloidal suspensions, is one that Professor Langford mentioned earlier in these proceedings. In the relaxation field, one of the comparatively new developments has been the measurement of kinetics of ion transfer to and from colloidal suspensions. Yasunaga at Hiroshima University is a pioneer in this type of study (20, 21, 22). His students take materials such as iron oxides that form colloidal suspensions that do not precipitate rapidly and measure the kinetics of proton transfer to the colloidal particles using relaxation techniques such as the pressure-jump method.
The appearance or disappearance of the U.V. absorption of the carbonyl group can in principle be used for kinetic measurements. Bell and Jensen (1961) applied this method to 1,3-dichloroacetone the reaction is too fast in pure water, but proceeded at a convenient rate in 5% water-I-dioxan mixtures, in which there is about 50% hydration at equilibrium. Catalysis by many acids and bases was observed. Much faster reactions can be studied by relaxation methods, and the pressure-jump technique has been applied to the reaction Me0(OH)2.CO2H MeC0.C02H-hH20 by Strehlow (1962). [Pg.20]

S. Ainsworth, C.C. (1997). Arsenate and chromate retention mechanism on goethite. 2 Kinetic evaluation using a pressure-jump relaxation technique. Envir. Sci. Techn. 31 321-326... [Pg.586]

The apparatus s step change from ambient to desired reaction conditions eliminates transport effects between catalyst surface and gas phase reactants. Using catalytic reactors that are already used in industry enables easy transfer from the shock tube to a ffow reactor for practical performance evaluation and scale up. Moreover, it has capability to conduct temperature- and pressure-jump relaxation experiments, making this technique useful in studying reactions that operate near equilibrium. Currently there is no known experimental, gas-solid chemical kinetic method that can achieve this. [Pg.210]

Oxovanadium(IV) sulfate solutions were studied by Ducret who concluded that [VO(S04)] and [V0(S04)2]2- form and reported [V0S04]/([V02+][S04-]) = 63.466 Others obtained 2.4 x 102.565 Pressure jump relaxation techniques on VOS04 solutions were explained according to equation (43) K = (3.0 0.5) x 102. Grigor eva studied vanadium(lV) solutions over a wide range of H2S04 and SO2- concentrations.567... [Pg.512]

To study rapid reactions, traditional batch and flow techniques are inadequate. However, the development of stopped flow, electric field pulse, and particularly pressure-jump relaxation techniques have made the study of rapid reactions possible (Chapter 4). German and Japanese workers have very successfully studied exchange and sorption-desorption reactions on oxides and zeolites using these techniques. In addition to being able to study rapid reaction rates, one can obtain chemical kinetics parameters. The use of these methods by soil and environmental scientists would provide much needed mechanistic information about sorption processes. [Pg.3]

Methods such as nuclear magnetic resonance (NMR), electron spectroscopy for chemical analysis (ESCA), electron spin resonance (ESR), infrared (IR), and laser raman spectroscopy could be used in conjunction with rate studies to define mechanisms. Another alternative would be to use fast kinetic techniques such as pressure-jump relaxation, electric field pulse, or stopped flow (Chapter 4), where chemical kinetics are measured and mechanisms can be definitively established. [Pg.17]

Another consideration in choosing a kinetic method is the objective of one s experiments. For example, if chemical kinetics rate constants are to be measured, most batch and flow techniques would be unsatisfactory since they primarily measure transport- and diffusion-controlled processes, and apparent rate laws and rate coefficients are determined. Instead, one should employ a fast kinetic method such as pressure-jump relaxation, electric field pulse, or stopped flow (Chapter 4). [Pg.40]

Conductivity and Optical Detection Using p-Jump Relaxation 75 Evaluation of p-Jump Measurements 76 Commercially Available p-Jump Units 78 Application of Pressure-Jump Relaxation Techniques to Soil Constituents 81 Stopped-Flow Techniques 91 Introduction 91... [Pg.61]

However, p-jump techniques are not without fault (Takahashi and Alberty, 1969). Most chemical reactions are less sensitive to pressure than to temperature alterations. Thus, a highly sensitive detection method such as conductivity must be employed to measure relaxation times if p-jump is used. Conductometric methods are sensitive on an absolute basis, but it is also fundamental that the solutions under study have adequate buffering and proper ionic strengths. In relaxation techniques, small molar volume changes result, and consequently, even if a low level of an inert electrolyte is present, conductivity changes may be undetectable if pressure perturbations of 5-10 MPa are utilized (Takahashi and Alberty, 1969). [Pg.64]

Application of Pressure-Jump Relaxation Techniques to Soil Constituents... [Pg.81]

Knoche, W., and Wiese, G. (1976). Pressure-jump relaxation technique. Rev. Sci. Instrum. 47, 220-221. [Pg.198]

The molar volume change AV° is small for most reactions in solution, which requires large pressure changes (>50 atm) for a measurable perturbation of an equilibrium [30], This technique has not found much use in electron-transfer reactions, but various absorption-desorption phenomena, association-dissociation equilibria, and structural relaxations have been studied successfully. Pressure jump is also quite useful in biological studies of folding and unfolding of proteins and DNA owing to the pressure sensitivity of these processes [31],... [Pg.484]

Werner studied cobalt(III), chromium(III), platinum(II), and platinum(IV) compounds because they are inert and can be more readily characterized than labile compounds. This tendency has continued, and much of the discussion in this chapter is based on inert compounds because they can be more easily crystallized from solution and their structures determined. Labile compounds have also been studied extensively, but their study requires techniques capable of dealing with very short times (stopped flow or relaxation methods, for example, temperature or pressure jump, nuclear magnetic resonance). [Pg.415]

The various elementary steps involved in the surface photoredox reaction, leading to dissolution of hematite in the presence of oxalate, are outlined in Figure 12.10. The two-dimensional stmcture of the surface of an iron(III) hydroxide given in this figure is highly schematic. The charges indicated correspond to relative charges. An important step is the formation of a hypothetical bidentate, mononuclear surface complex. With pressure jump relaxation technique, it has... [Pg.749]

Measurements of the relaxation times by relaxation methods (involving a temperature jump [T-jump], pressure jump, electric field jump, or a periodic disturbance of an external parameter, as in ultrasonic techniques) are commonly used to follow the kinetics of very fast reactions. [Pg.48]

Use of pressure-jump relaxation and other relaxation techniques have been shown to offer much in the study of sorption measurements on soil components (Sparks and Zhang, 1991 Sparks, 1995). An especially attractive approach for ascertaining sorption mechanisms on soils would be to combine relaxation approaches with in situ surface spectroscopic techniques. However, there are a few examples in the literature of studies where sorption reactions on soil components have been hypothesized via kinetic experiments and verified in separate spectroscopic investigations (Fuller et al., 1993 Waychunas et al., 1993 Fendorf et al., 1997 Grossi et al., 1997 Scheidegger et al., 1997). [Pg.177]

A number of soil chemical phenomena are characterized by rapid reaction rates that occur on millisecond and microsecond time scales. Batch and flow techniques cannot be used to measure such reaction rates. Moreover, kinetic studies that are conducted using these methods yield apparent rate coefficients and apparent rate laws since mass transfer and transport processes usually predominate. Relaxation methods enable one to measure reaction rates on millisecond and microsecond time scales and 10 determine mechanistic rate laws. In this chapter, theoretical aspects of chemical relaxation are presented. Transient relaxation methods such as temperature-jump, pressure-jump, concentration-jump, and electric field pulse techniques will be discussed and their application to the study of cation and anion adsorption/desorption phenomena, ion-exchange processes, and hydrolysis and complexation reactions will he covered. [Pg.61]

For reactions that occur on time scales < 15 s, none of the techniques given above is satisfactory. To measure these reactions, one can employ relaxation methods (Table 3-1), such as pressure-jump, temperature-jump, concentration-jump, and electric-field pulse (Bernasconi, 1976 Gettins and Wyn-Jones, 1979 Bernasconi, 1986 Sparks, 1989, 1990). [Pg.62]


See other pages where Relaxation techniques pressure jump is mentioned: [Pg.181]    [Pg.114]    [Pg.132]    [Pg.140]    [Pg.616]    [Pg.609]    [Pg.18]    [Pg.70]    [Pg.391]    [Pg.90]    [Pg.219]    [Pg.110]    [Pg.281]    [Pg.509]    [Pg.205]    [Pg.1886]    [Pg.386]    [Pg.93]    [Pg.325]    [Pg.384]   
See also in sourсe #XX -- [ Pg.337 ]




SEARCH



Pressure jump

Pressure jump techniques relaxation times

Pressure-jump technique

Relaxation techniques pressure-jump method

Technique pressures

© 2024 chempedia.info