Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reflux determining

If the liquid compositions on four adjacent plates in a column were 0.18, 0.28, 0.41 and 0.57 under conditions of total reflux, determine the plate efficiencies. [Pg.121]

Polymerization was carried out with 10 mol% catalyst at in 1,2-dichloroethane solvent at reflux. Determined by GPC. [Pg.259]

Figure 13.7. Features of McCabe-Thiele diagrams for constant molal overflow, (a) Operating line equations and construction and minimum reflux construction, (b) Orientations of -lines, with slope = ql q — 1), for various thermal conditions of the feed, (c) Minimum trays, total reflux, (d) Operating trays and reflux, (e) Minimum reflux determined by point of contact nearest xD. Figure 13.7. Features of McCabe-Thiele diagrams for constant molal overflow, (a) Operating line equations and construction and minimum reflux construction, (b) Orientations of -lines, with slope = ql q — 1), for various thermal conditions of the feed, (c) Minimum trays, total reflux, (d) Operating trays and reflux, (e) Minimum reflux determined by point of contact nearest xD.
Figure 2.15 Example 2.3—Complex benzene-toluene separation, (a) The example column, divided into sections (6) minimum reflux determination (c) determining theoretical stages, and feed and drawoff points. (From Henry Z. Kister. Chemical Engineering, January 21, 1985, pip. 97-104, Reprinted courtesy of Chemical Engineering.)... Figure 2.15 Example 2.3—Complex benzene-toluene separation, (a) The example column, divided into sections (6) minimum reflux determination (c) determining theoretical stages, and feed and drawoff points. (From Henry Z. Kister. Chemical Engineering, January 21, 1985, pip. 97-104, Reprinted courtesy of Chemical Engineering.)...
Figure 2.18 Example 2A—Depropanizer (a) Equilibrium curve (b) Hengstebeck diagram (c) minimum reflux determination. (Part b. from C. J. King Separation Processes, 2d ed.. Copyright by McGrew-Hill, Inc. Reprinted by permission. Parts a and c based on C. J, King, loc. cit.)... Figure 2.18 Example 2A—Depropanizer (a) Equilibrium curve (b) Hengstebeck diagram (c) minimum reflux determination. (Part b. from C. J. King Separation Processes, 2d ed.. Copyright by McGrew-Hill, Inc. Reprinted by permission. Parts a and c based on C. J, King, loc. cit.)...
Underwood s method (36). This method solves an equation which relates feed composition, thermal condition of the feed, and relative volatility at the average temperature of the column for a factor 6 which lies numerically between the relative volatilities of the keys. This factor is substituted in a second equation which relates minimum reflux to relative volatility and distillate composition. The method assumes constant relative volatility at the mean column temperature and constant molar overflow (Sec. 2.2.2). This method gives reasonable engineering accuracy for systems approaching ideality (28). The Underwood method has traditionally been the most popular for minimum reflux determination, When no distributed key components are present, the method is... [Pg.108]

Figure 10.11 Minimum reflux by Ponchon method, (u) Minimum reflux determined by the line through feed point, liquid feed, (b) Minimum reflux ratio determined by tie line between feed composition and overhead product. Figure 10.11 Minimum reflux by Ponchon method, (u) Minimum reflux determined by the line through feed point, liquid feed, (b) Minimum reflux ratio determined by tie line between feed composition and overhead product.
The overall design, with all refluxes, determined by the TT technique is given in Figure 6.41. [Pg.203]

Having evaluated R i, the corresponding number of plates N can be determined. The calculation is truncated by employing another useful rule of thumb that when R = 2R the number of plates required in the column will be JV = 2N i , where iV is the number of plates required at total reflux. Determination of N begins with Fenske s relationship ... [Pg.282]

Example 5.3 Using Eq. (5.8), determine the best sequence for the mixture of alkanes in Table 5.2. Assume the ratio of actual to minimum reflux to be 1.1. [Pg.138]

The oxime is freely soluble in water and in most organic liquids. Recrystallise the crude dry product from a minimum of 60-80 petrol or (less suitably) cyclohexane for this purpose first determine approximately, by means of a small-scale test-tube experiment, the minimum proportion of the hot solvent required to dissolve the oxime from about 0-5 g. of the crude material. Then place the bulk of the crude product in a small (100 ml.) round-bottomed or conical flask fitted with a reflux water-condenser, add the required amount of the solvent and boil the mixture on a water-bath. Then turn out the gas, and quickly filter the hot mixture through a fluted filter-paper into a conical flask the sodium chloride remains on the filter, whilst the filtrate on cooling in ice-water deposits the acetoxime as colourless crystals. These, when filtered anddried (either by pressing between drying-paper or by placing in an atmospheric desiccator) have m.p. 60 . Acetoxime sublimes rather readily when exposed to the air, and rapidly when warmed or when placed in a vacuum. Hence the necessity for an atmospheric desiccator for drying purposes. [Pg.94]

Add 1 ml. of the alcohol-free ether to 0-1-0-15 g. of finely-powdered anhydrous zinc chloride and 0 5 g. of pure 3 5-dinitrobenzoyl chloride (Section 111,27,1) contained in a test-tube attach a small water condenser and reflux gently for 1 hour. Treat the reaction product with 10 ml. of 1-5N sodium carbonate solution, heat and stir the mixture for 1 minute upon a boiling water bath, allow to cool, and filter at the pump. Wash the precipitate with 5 ml. of 1 5N sodium carbonate solution and twice with 6 ml. of ether. Dry on a porous tile or upon a pad of filter paper. Transfer the crude ester to a test-tube and boil it with 10 ml. of chloroform or carbon tetrachloride filter the hot solution, if necessary. If the ester does not separate on cooling, evaporate to dryness on a water bath, and recrystallise the residue from 2-3 ml. of either of the above solvents. Determine the melting point of the resulting 3 5 dinitro benzoate (Section 111,27). [Pg.316]

Reflux 1 ml. of the ether with 5 ml. of freshly distilled, constant boiling point hydriodic acid (Section 11,49,2), b.p. 126-128°, for 2-3 hours. Add 10 ml. of water, distil and collect about 7 ml. of liquid. Decolourise the distillate by the addition of a httle sodium bisulphite, and separate the two layers by means of a dropper pipette (Fig. 11,27,1). Determine the b.p. of the resulting iodide by the Siwoloboff method (Section 11,12) and prepare a crystalline derivative (Section 111,42). [Pg.316]

Hydrolysis (or saponification) of n-butyl acetate. Boil 4-5 g. of n-butyl acetate (Section 111,95) with 50 ml. of 10 per cent, sodium hydroxide solution under reflux until the odour of the ester can no longer be detected (about 1 hour). Set the condenser for downward distiUation and coUect the first 10 ml. of distillate. Saturate it with potassium carbonate, aUow to stand for 5 minutes, and withdraw all the Uquid into a small pipette or dropper pipette. AUow the lower layer of carbonate solution to run slowly into a test-tube, and place the upper layer into a small test-tube or weighing bottle. Dry the alcohol with about one quarter of its buUr of anhydrous potassium carbonate. Remove the alcohol with a dropper pipette and divide it into two parts use one portion for the determination of the b.p. by the Siwoloboff method (Section 11,12) and convert the other portion into the 3 5-dinitrobenzoate (Section III, 27) and determine the m.p. [Pg.390]

Boil 2 g. of the ester with 30 ml. of 10 per cent, sodium or potassium hydroxide solution under reflux for at least 1 hour. If the alcohol formed is water (or alkali) soluble, the completion of the hydrolysis will be indicated by the disappearance of the ester layer. Distil ofiF the liquid through the same condenser and collect the first 3-5 ml. of distillate. If a distinct la3 er separates on standing (or upon saturation of half the distillate with potassium carbonate), remove this layer with a capillary dropper, dry it with a little anhydrous potassium carbonate or anhydrous calcium sulphate, and determine the b.p. by the SiwoloboflF method... [Pg.391]

Conversion of (3- into a-glucose penta-acetate. Add 0-5 g. of anhydrous zinc chloride rapidly to 25 ml. of acetic anhydride in a 200 ml. round-bottomed flask, attach a reflux condenser, and heat on a boiling water bath for 5-10 minutes to dissolve the solid. Then add 5 g. of the pure P glucose penta-acetate, and heat on a water bath for 30 minutes. Pour the hot solution into 250 ml. of ice water, and stir vigorously in order to induce crystaUisation of the oily drops. Filter the solid at the pump, wash with cold water, and recrystaUise from methylated spirit or from methyl alcohol. Pure a-glucose penta-acetate, m.p. 110-111°, will be obtained. Confirm its identity by a mixed m.p. determination. [Pg.452]

Method 1. Treat 2 0 g. of the mixture of amines with 40 ml. of 10 per cent, sodium hydroxide solution and add 4 g. (3 ml.) of benzenesulphonyl chloi de (or 4 g. of p-toluenesulphonyl chloride) in small portions. Warm on a water bath to complete the reaction. Acidify the alkaline solution with dilute hydrochloric acid when the sulphonamides of the primary and secondary amines are precipitated. Filter off the solid and wash it with a little cold water the tertiary amine will be present in the filtrate. To convert any disulphOnamide that may have been formed from the primary amine into the sulphonamide, boil the solid under reflux with 2 0 g. of sodium dissolved in 40 ml. of absolute ethyl alcohol for 30 minutes. Dilute with a little water and distil off the alcohol filter off the precipitate of the sulphonamide of the secondary amine. Acidify the filtrate with dilute hydrochloric acid to precipitate the derivative of the primary amine. Recrystallise the respective derivatives from alcohol or from dilute alcohol, and identify them inter alia by a determination of the m.p. [Pg.651]

The hydrolysis by alkali is illustrated by the following experimental details for benzamido. Place 3 g. of benzamide and 50 ml. of 10 per cent, sodium hydroxide solution in a 150 ml. conical or round-bottomed flask equipped with a reflux condenser. Boil the mixture gently for 30 minutes ammonia is freely evolved. Detach the condenser and continue the boiling in the open flask for 3-4 minutes to expel the residual ammonia. Cool the solution in ice, and add concentrated hydrochloric acid until the mixture is strongly acidic benzoic acid separates immediately. Leave the mixture in ice until cold, filter at the pump, wash with a little cold water and drain well. RecrystaUise the benzoic acid from hot water. Determine the m.p., and confirm its identity by a mixed m.p. test. [Pg.799]

Resoles. Like the novolak processes, a typical resole process consists of reaction, dehydration, and finishing. Phenol and formaldehyde solution are added all at once to the reactor at a molar ratio of formaldehyde to phenol of 1.2—3.0 1. Catalyst is added and the pH is checked and adjusted if necessary. The catalyst concentration can range from 1—5% for NaOH, 3—6% for Ba(OH)2, and 6—12% for hexa. A reaction temperature of 80—95°C is used with vacuum-reflux control. The high concentration of water and lower enthalpy compared to novolaks allows better exotherm control. In the reaction phase, the temperature is held at 80—90°C and vacuum-refluxing lasts from 1—3 h as determined in the development phase. SoHd resins and certain hquid resins are dehydrated as quickly as possible to prevent overreacting or gelation. The end point is found by manual determination of a specific hot-plate gel time, which decreases as the polymerization advances. Automation includes on-line viscosity measurement, gc, and gpc. [Pg.298]

Cyanide compounds are classified as either simple or complex. It is usually necessary to decompose complex cyanides by an acid reflux. The cyanide is then distilled into sodium hydroxide to remove compounds that would interfere in analysis. Extreme care should be taken during the distillation as toxic hydrogen cyanide is generated. The cyanide in the alkaline distillate can then be measured potentiometricaHy with an ion-selective electrode. Alternatively, the cyanide can be determined colorimetricaHy. It is converted to cyanogen chloride by reaction with chloramine-T at pH <8. The CNCl then reacts with a pyridine barbituric acid reagent to form a red-blue dye. [Pg.232]


See other pages where Reflux determining is mentioned: [Pg.178]    [Pg.91]    [Pg.638]    [Pg.791]    [Pg.178]    [Pg.91]    [Pg.638]    [Pg.791]    [Pg.138]    [Pg.426]    [Pg.233]    [Pg.602]    [Pg.786]    [Pg.176]    [Pg.346]    [Pg.653]    [Pg.493]    [Pg.486]    [Pg.196]    [Pg.55]    [Pg.77]   
See also in sourсe #XX -- [ Pg.382 ]




SEARCH



© 2024 chempedia.info