Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Refining electrorefining

Electrorefining. Electrolytic refining is a purification process in which an impure metal anode is dissolved electrochemicaHy in a solution of a salt of the metal to be refined, and then recovered as a pure cathodic deposit. Electrorefining is a more efficient purification process than other chemical methods because of its selectivity. In particular, for metals such as copper, silver, gold, and lead, which exhibit Htfle irreversibHity, the operating electrode potential is close to the reversible potential, and a sharp separation can be accompHshed, both at the anode where more noble metals do not dissolve and at the cathode where more active metals do not deposit. [Pg.175]

Other Meta.Is, Although most cobalt is refined by chemical methods, some is electrorefined. Lead and tin are fire refined, but a better removal of impurities is achieved by electrorefining. Very high purity lead is produced by an electrochemical process using a fluosiUcate electrolyte. A sulfate bath is used for purifying tin. Silver is produced mainly by electrorefining in a nitrate electrolyte, and gold is refined by chemical methods or by electrolysis in a chloride bath. [Pg.176]

Manufacture and Recovery. Electrolytic copper refinery slimes are the principal source of selenium and its sister element, tellurium, atomic numbers 34 and 52, respectively. Electrolytic copper refinery slimes are those constituents in the copper anode which are not solubilized during the refining process and ultimately accumulate in the bottom of the electrorefining tank. These slimes are periodically recovered and processed for their metal values. Slimes generated by the refining of primary copper, copper produced from ores and concentrates, generally contain from 5—25% selenium and 2—10% tellurium. [Pg.327]

Fire Refining. The impurities in bhster copper obtained from converters must be reduced before the bUster can be fabricated or cast into anodes to be electrolyticaHy refined. High sulfur and oxygen levels result in excessive gas evolution during casting and uneven anode surfaces. Such anodes result in low current efficiencies and uneven cathode deposits with excessive impurities. Fite refining is essential whether the copper is to be marketed directly or electrorefined. [Pg.201]

Fite refining adjusts the sulfur and oxygen levels in the bhster copper and removes impurities as slag or volatile products. The fire-refined copper is sold for fabrication into end products, provided that the chemistry permits product specifications to be met. Some impurities, such as selenium and nickel, are not sufficiently removed by fire refining. If these impurities are detrimental to fabrication or end use, the copper must be electrorefined. Other impurities, such as gold, silver, selenium, and tellurium, are only recovered via electrorefining. Virtually all copper is electrorefined. [Pg.201]

If the fire-refined copper is to be cast into anodes for electrorefining, the oxygen content of the copper is lowered to 0.05—0.2%. If the copper is to be sold directly for fabrication, the oxygen level is adjusted to 0.03—0.05%, which is the range for tough-pitch copper. The principal reactions of fire refining are... [Pg.201]

Although some changes occur in the melting furnace, cathode impurities are usually reflected directly in the final quaUty of electrorefined copper. It is commonly accepted that armealabiUty of copper is unfavorably affected by teUurium, selenium, bismuth, antimony, and arsenic, in decreasing order of adverse effect. Silver in cathodes represents a nonrecoverable loss of silver to the refiner. If the copper content of electrolyte is maintained at the normal level of 40—50 g/L, and the appropriate ratio of arsenic to antimony and bismuth (29) is present, these elements do not codeposit on the cathode. [Pg.203]

Air emissions for processes with few controls may be of the order of 30 kilograms lead or zinc per metric ton (kg/t) of lead or zinc produced. The presence of metals in vapor form is dependent on temperature. Leaching processes will generate acid vapors, while refining processes result in products of incomplete combustion (PICs). Emissions of arsine, chlorine, and hydrogen chloride vapors and acid mists are associated with electrorefining. [Pg.132]

Electrorefining has been used for the purification of many common as well as reactive metals. It has been seen that the emf or the potential required for such a process is usually small because the energy needed for the reduction of the ionic species at the cathode is almost equal to that released by the oxidation of the crude metal at the anode. Some metals, such as copper, nickel, lead, silver, gold, etc., are refined by using aqueous electrolytes whereas molten salt electrolytes are necessary for the refining of reactive metals such as aluminum,... [Pg.716]

In the copper electrorefining process, fire refined copper or blister copper is cast to form the anodes and the cathode is either a reusable stainless steel sheet or a thin sheet of electro deposited copper which finally becomes a part of the refined cathode. The electrolyte is an acidified solution of copper sulfate. [Pg.717]

Refinery pump, centerline-mounted, 21 65 Refining. See also Electrorefining Purification glass, 12 596-597 gold, 12 690... [Pg.794]

If an actinide metal is available in sufficient quantity to form a rod or an electrode, very efficient methods of purification are applicable electrorefining, zone melting, and electrotransport. Thorium, uranium, neptunium, and plutonium metals have been refined by electrolysis in molten salts (84). An electrode of impure metal is dissolved anodically in a molten salt bath (e.g., in LiCl/KCl eutectic) the metal is deposited electrochemically on the cathode as a solid or a liquid (19, 24). To date, the purest Np and Pu metals have been produced by this technique. [Pg.13]

The method of choice for kilogram-scale preparations of Np metal is direct oxide reduction by Ca metal in a molten CaCl2 solvent system as described above, followed by electrorefining. This metal can be further refined by levitation melting (Section III,A). [Pg.22]

Alternatively, low-grade stibnite ore is converted to its oxide which is then reduced with carbon. Tetrahedrite may be treated with sodium sulfide solution. The solution containing thioantimonate formed is then electrolyzed in a diaphragm cell using a steel cathode and lead anode. The metal is further refined by oxidation or electrorefining process. [Pg.49]

Magnesium chloride and excess magnesium are removed by distillation at reduced pressure. Pure zirconium may be prepared by several methods that include iodide decomposition process, zone refining, and electron beam melting. Also, Zr metal may be electrorefined in a molten salt bath of potassium zirconium fluoride, K2ZrFe... [Pg.997]

FIGURE 18.19 Electrorefining of copper metal, (a) Alternating slabs of impure copper and pure copper serve as the electrodes in electrolytic cells for the refining of copper, (b) Copper is transferred through the CuS04 solution from the impure Cu anode to the pure Cu cathode. More easily oxidized impurities (Zn, Fe) remain in solution as cations, but noble metal impurities (Ag, Au, Pt) are not oxidized and collect as anode mud. [Pg.798]

Nickel, used to make stainless steel, can be purified by electrorefining. The electrolysis cell has an impure nickel anode, a pure nickel cathode, and an aqueous solution of nickel sulfate as the electrolyte. How many kilograms of nickel can be refined in 8.00 h if the current passed through the cell is held constant at 52.5 A ... [Pg.942]

In electrorefining, the metal to be refined is used as the anode whic dissolves in the electrolyte and is deposited as electrolytic-grade mett at the cathode. The impurities present in the anode remain on it, fall oi to the bottom of the cell as slime, or go into solution but are prevente. from moving toward the cathode by precipitation with some chemics reagent such as another metal added to the electrolyte. The buildup c metallic impurities that are dissolved but not deposited at the cathode i reduced by circulation of fresh electrolyte through the cells. Electrorefinin techniques are used in producing gold, silver, copper, nickel, cobalt, lead tin, antimony, bismuth, indium, and mercury. [Pg.80]


See other pages where Refining electrorefining is mentioned: [Pg.39]    [Pg.39]    [Pg.39]    [Pg.39]    [Pg.169]    [Pg.175]    [Pg.3]    [Pg.166]    [Pg.561]    [Pg.561]    [Pg.563]    [Pg.198]    [Pg.202]    [Pg.202]    [Pg.143]    [Pg.5]    [Pg.717]    [Pg.748]    [Pg.763]    [Pg.83]    [Pg.147]    [Pg.794]    [Pg.618]    [Pg.366]    [Pg.11]    [Pg.20]    [Pg.21]    [Pg.25]    [Pg.369]    [Pg.166]    [Pg.751]    [Pg.939]   
See also in sourсe #XX -- [ Pg.823 ]




SEARCH



Electrorefining

© 2024 chempedia.info