Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reduction procedures, ammonia

Toluene is a useful co-solvent in metal-ammonia reductions as first reported by Chapman and his colleagues. The author has found that a toluene-tetrahydrofuran-ammonia mixture (1 1 2) is a particularly useful medium for various metal-ammonia reductions. Procedure 8a (section V) describes the reduction of 17-ethyl-19-nortestosterone in such a system. Ethylene dibromide is used to quench excess lithium. Trituration of the total crude reduction product with methanol affords an 85% yield of 4,5a-dihydro-17-ethyl-19-nortestosterone, mp 207-213° (after sintering at 198°), reported mp 212-213°. For the same reduction using Procedure 5 (section V), Bowers et al obtained a 60% yield of crude product, mp, 196-199°, after column chromatography of the total reduction product. A similar reduction of 17-ethynyl-19-nortestosterone is described in Procedure 8b (section V). The steroid concentration in the toluene-tetrahydrofuran-ammonia system is 0.05 M whereas in the ether-dioxane-ammonia system it is 0.029 M. [Pg.44]

Birch Reductions in Ammonia-Tetrahydrofuran-f-Butyl Alcohol29 a. General Procedure for Birch Reductions... [Pg.296]

The method of reduction influences the properties of ammonia catalysts. A generally appropriate reduction schedule cannot be prescribed because different types of catalysts call for different reduction procedures to reach their most active state. It has previously been mentioned that the promoters used in ammonia catalysts have a retarding effect on the reduction. According to the author s experience, oxides of the alkaline earth metals, especially CaO, make the catalysts especially difficult to reduce. As will be remembered these oxides enter the magnetite matrix readily. [Pg.33]

The preparation of Ru supported catalysts by sol-gel method, indeed, was extended to obtain new formulations by changing the type of support. Alkali-promoted Ru/MgO systems were prepared starting from magnesium ethoxide, Ru3(CO)i2 and a cesium compound [9]. The gels were subjected to an activation/reduction procedure to substantially obtain Ru-CsOH/MgO and then tested as catalysts in the ammonia synthesis at atmospheric pressure. It was evidenced that the sol-gel prepared Cs-promoted Ru/MgO catalysts are much more active, under similar reaction comlitions, than the analogous catalysts prepared by the impregnation procedures reported in literature [10]. [Pg.670]

Different reduction procedures apply if the catalyst is prereduced or when a combination of prereduced and unreduced catalyst is used. Whereas reduction of the bulk magnetite catalyst goes on over days, the reduction of the superficial oxidic layer of the prereduced catalyst is facile and may be accomplished within approximately one day if solely prereduced catalyst is charged. Often the first bed is charged with prereduced catalyst to enable fast reduction and onset of the ammonia synthesis reaction, which thereby liberates heat to support the endothermic reduction in the remaining part of the bed. [Pg.21]

Many aromatic steroids submitted to the Birch reduction contain hydroxyl groups which are deprotonated to the corresponding alkoxides during the reduction, particularly if a tertiary alcohol is used as the proton donoi. The steroidal alkoxides and the one derived from the proton donor often precipitate and cause foaming of the reaction mixture, as was noted by Wilds and Nelson. These alkoxides can be kept in solution by adding an excess of the proton donor alcohol to the mixture the alcohol also assists in dissolving the starting hydroxylic steroid. A particularly useful reaction medium for hydroxylic steroids contains ammonia, tetrahydrofuran and -butyl alcohol in the volume ratio of 2 1 (Procedure 2, section V). This mixture... [Pg.26]

The solubility of many steroids in ammonia-tetrahydrofuran-/-butyl alcohol is about 0.06 A/, a higher concentration than has been reported in other solvent systems. Still higher concentrations may be possible in particular cases by suitable variation in the solvent ratios Procedure 3 (section V) describes such a reduction of estradiol 3-methyl ether at a 0.12 M concentration. A few steriods such as the dimethyl and diethyl ketals of estrone methyl ether are poorly soluble in ammonia-tetrahydrofuran-/-buty] alcohol and cannot be reduced successfully at a concentration of 0.06 even with a 6 hour reduction period. The diethyl ketal of estrone methyl ether is reduced successfully at 0.12 M concentration using a two-phase solvent system of ammonia-/-amyl alcohol-methylcyclohexane (Procedure 4, section V). This mixture probably would be useful for any nonpolar steroid that is poorly soluble in polar solvents but is readily soluble in hydrocarbons. [Pg.26]

Reduction of linearly conjugated 4,6-dien-3-ones with lithium-ammonia yields either 5-en-3-ones or 4-en-3-ones depending upon the work-up procedure. Protonation of the dienyl carbanion intermediate (58) occurs at C-7 to give ultimately the enolate ion (59) kinetic protonation of (59) occurs largely at C-4 to give the 5-en-3-one (60). ... [Pg.32]

Lithium-ammonia reduction of l7a-ethyl-19-nortestosterone (68) using Procedure 8a (section V) affords the 4,5a-dihydro compound (69) in 85% yield after a reaction time of 12 minutes after a reaction time of 80 minutes, the yield of (69) is 76%. Lfsing sodium in the same reduction, the yields of compound (69) are 79 and 77 % after reaction times of 8 and 80 minutes respectively. Both the lithium and sodium enolates appear to be reasonably stable in liquid ammonia in the presence of alkali metal. Since the enolate salts are poorly soluble in ammonia, their resistance to protonation by it may be due in part to this factor. [Pg.39]

The 17-ethylene ketal of androsta-l,4-diene-3,17-dione is reduced to the 17-ethylene ketal of androst-4-en-3,17-dione in about 75% yield (66% if the product is recrystallized) under the conditions of Procedure 8a (section V). However, metal-ammonia reduction probably is no longer the method of choice for converting 1,4-dien-3-ones to 4-en-3-ones or for preparing 5-en-3-ones (from 4,6-dien-3-ones). The reduction of 1,4-dien-3-ones to 4-en-3-ones appears to be effected most conveniently by hydrogenation in the presence of triphenylphosphine rhodium halide catalysts. Steroidal 5-en-3-ones are best prepared by base catalyzed deconjugation of 4-en-3-ones. ... [Pg.44]

The reduction is carried out much as described in Procedure 2. Ammonia (950 ml) is distilled into a 5-liter reaction flask and 950 ml of /-amyl alcohol and a solution of the ketal in 950 ml of methylcyclohexane are added with good stirring. Sodium (57 g, 2.5 g-atoms) is added in portions. The reaction mixture becomes blue within 30-45 min after the sodium is added and the metal is consumed within about 3 hr after the blue color appears. After the mixture becomes colorless, 200 ml of ethanol is added and the ammonia is allowed to boil off through a mercury trap. Then 500 ml of water and 500 ml 0% potassium bicarbonate solution are added and the organic layer is separated. The organic layer is washed once with 10 % potassium bicarbonate... [Pg.51]

The reduction is effected exactly as in Procedure 8a but using 0.61 g (0.088 g-atom) of lithium. After the crude reaction product has been washed well on the filter with cold water, it is dissolved in ethyl acetate, the solution is filtered through the sintered glass funnel to remove iron compounds from the ammonia, and the filtrate is extracted with saturated salt solution. The organic layer is dried over sodium sulfate and the solvent is removed. The solid residue is crystallized from methanol (120 ml) using Darco. The mixture is cooled in an ice-bath, the solid is collected, rinsed with cold methanol, and then air-dried to give 12.9 g (85%), mp 129-132° reported for the tetrahydropyranyi ether of 3j5-hydroxypregn-5-en-20-one, mp 129-131°. [Pg.56]

A useful alternate procedure which allows the generation and alkylation of the less stable enolate anion has been reported by Stork.This method takes advantage of the fact that the thermodynamically less stable enolate anion formed in the lithium ammonia reduction of a conjugated enone... [Pg.86]

Birch s procedure for tropone synthesis appears to be widely applicable to 2,3- or 2,5-dihydroanisole derivatives which are readily obtained by reduction of appropriate aromatic methyl ethers by alcoholic metal-ammonia solutions. " Additional functional groups reactive to dibromocarbene or sensitive to base such as double bonds, ketones and esters would need to be protected or introduced subsequent to the expansion steps. [Pg.373]

The alkoxycarbonyl group activates the N — N bond, so that a racemization-free reductive cleavage by treatment with a large excess of lithium in liquid ammonia is possible (sec procedure below). This method is not suitable for hydrazines containing a benzylic C-N bond, because it is cleaved under the reducing conditions. [Pg.717]

High-boiling products found in this procedure and in similar experiments involving cyclohex-2-enone derivatives5 probably result from bimolecular reduction processes.15 3-Methylcyclohexanone, which arises by protonation rather than alkylation of the enolate (and which made up ca. 12% of the volatile products), is probably the result of reaction of allyl bromide with liquid ammonia to form the acidic species allyl ammonium bromide.5 10... [Pg.56]

Analytical. Mannitol Hexanitrate can be hydrolyzed in basic soln and the soln acidified in the presence of NITRON to quanty ppt NITRON nitrate (Ref 16). A procedure is described for. the quant detn of nitrate esters, including Mannitol Hexanitrate, in the presence of aromatic nitro compds in Ref 17. It gives a yellow color when treated in et ale or acet with 5% aq K hydroxide, then 5% aq ammonia (Ref 24), It can be quanty detd by reduction with Devarda s alloy (Encycl 5, D-l 110) or A1 wire in aq et ale and titration of the evolved... [Pg.32]

There are two important hydrogenation (or reduction) — titration procedures for the detn of N as ammonia. The Devarda method involves the quant reduction of nitrates to ammonia in alkaline soln using an Ai-Cu-Zn alloy. The ammonia evolved is distd into standard sulfuric acid... [Pg.301]

This procedure is illustrative of the general method of reduction of aromatic compounds by alkali metals in liquid ammonia known as the Birch reduction. The theoretical and preparative aspects of the Birch reduction have been discussed in excellent reviews,4-4... [Pg.23]

Ammonia can be added to double bonds (even ordinary double bonds) in an indirect manner by the use of hydroboration (15-16) followed by treatment with NH2CI or NH2OSO2OH (12-29). This produces a primary amine with anti-Markovnikov orientation. An indirect way of adding a primary or secondary amine to a double bond consists of aminomercuration followed by reduction (see 15-3 for the analogous oxymercuration-demercuration procedure), for example. [Pg.1001]


See other pages where Reduction procedures, ammonia is mentioned: [Pg.293]    [Pg.52]    [Pg.8]    [Pg.258]    [Pg.392]    [Pg.8]    [Pg.51]    [Pg.115]    [Pg.186]    [Pg.217]    [Pg.409]    [Pg.561]    [Pg.934]    [Pg.103]    [Pg.476]    [Pg.8]    [Pg.25]    [Pg.40]    [Pg.43]    [Pg.45]    [Pg.934]    [Pg.25]    [Pg.505]    [Pg.303]    [Pg.57]    [Pg.105]    [Pg.348]    [Pg.634]   


SEARCH



Ammonia reduction

© 2024 chempedia.info