Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Redox state, general controls

In neural cells, the redox status is controlled by the thioredoxin (Trx) and glutathione (GSH) systems that scavenge harmful intracellular ROS. Thioredoxins are antioxidants that serve as a general protein disulphide oxidoreductase (Saitoh et al., 1998). They interact with a broad range of proteins by a redox mechanism based on the reversible oxidation of 2 cysteine thiol groups to a disulphide, accompanied by the transfer of 2 electrons and 2 protons. These proteins maintain their reduced state through the thioredoxin system, which consists of NADPH, thioredoxin reductase (TR), and thioredoxin (Trx) (Williams, Jr. et al., 2000 Saitoh et al., 1998). The thioredoxin system is a system inducible by oxidative stress that reduces the disulfide bond in proteins (Fig. 7.4). It is a major cellular redox system that maintains cysteine residues in the reduced state in numerous proteins. [Pg.151]

Oxidation state. Differences among the potentials of the redox couples of the actinides account for much of the differences in their speciation and environmental transport. Detailed information about the redox potentials for these couples can be found in numerous references (e.g., Hobart, 1990 Silva and Nitsche, 1995 Runde, 2002). This information is not repeated here, but a few general points should be made. Important oxidation states for the actinides under environmental conditions are described in Table 4. Depending on the actinide, the potentials of the III/IV, IV/V, V/VI, and/or IV/VI redox couples can be important under near-surface environmental conditions. When the redox potentials between oxidation states are sufficiently different, then one or two redox states will predominate this is the case for uranium, neptunium, and americium (Runde, 2002). The behavior of uranium is controlled by the predominance of U(VI) species under... [Pg.4768]

C. elegans Lin-11 General redox state 4Fe-4S Cell division control [97]... [Pg.296]

The concept of formal potentials has been developed for the mathematical treatment of redox titrations, because it was quickly realized that the standard potentials cannot be used to explain potentiometric titration curves. Generally, formal potentials are experimentally determined using equations similar to Eq. (1.2.24) because it is easy to control the overall concentrations of species in the two redox states. For calculating formal potentials it would be necessary to know the standard potential, all equilibrium constants of side reactions , and the concentrations of all solution constituents. In many cases this is still impossible as many equilibrium constants and the underlying chemical equilibria are still unknown. It is the great advantage of the concept of formal potentials to enable a quantitative description of the redox... [Pg.24]

As with acid-base and complexation titrations, redox titrations are not frequently used in modern analytical laboratories. Nevertheless, several important applications continue to find favor in environmental, pharmaceutical, and industrial laboratories. In this section we review the general application of redox titrimetry. We begin, however, with a brief discussion of selecting and characterizing redox titrants, and methods for controlling the analyte s oxidation state. [Pg.341]

On the other hand, it is generally accepted that the redox properties of the selective oxidation catalysts control the oxygen activation as well as the surface stabilization of the oxygen activated species and their reactivity (19), In particular, the stabilization of active oxygen forms requires the presence of reduced sites on the surface. In fact, the peculiar behaviour of Mo, V and Fe oxides in selective oxidation reactions is strictly linked with the stabilization of reduced states (19), This point has stimulated a growing interest in providing correlation between the degree of reduction (32) or the extent of reduced sites (20) and the reactivity in... [Pg.49]

Fig. 10.12. General principles of the SECM feedback mode. The UME, normally a disk electrode of radius r, is used to generate a redox mediator in its oxidised or reduced form (a reduction process is shown here) at a diffusion-controlled rate. As the UME approaches an insulating surface (a) diffusion of Ox to the electrode simply becomes hindered and the recorded limiting current is less than the steady-state value measured when the electrode is placed far from the surface, in the bulk of the solution, /( >). This effect becomes more pronounced as the tip/substrate separation, dKcm, is decreased. As the UME approaches a conducting surface (b) the original form of the redox mediator (Ox) can be regenerated at the substrate establishing a feedback cycle and an additional flux of material to the electrode. Fig. 10.12. General principles of the SECM feedback mode. The UME, normally a disk electrode of radius r, is used to generate a redox mediator in its oxidised or reduced form (a reduction process is shown here) at a diffusion-controlled rate. As the UME approaches an insulating surface (a) diffusion of Ox to the electrode simply becomes hindered and the recorded limiting current is less than the steady-state value measured when the electrode is placed far from the surface, in the bulk of the solution, /( >). This effect becomes more pronounced as the tip/substrate separation, dKcm, is decreased. As the UME approaches a conducting surface (b) the original form of the redox mediator (Ox) can be regenerated at the substrate establishing a feedback cycle and an additional flux of material to the electrode.

See other pages where Redox state, general controls is mentioned: [Pg.410]    [Pg.204]    [Pg.21]    [Pg.96]    [Pg.2511]    [Pg.126]    [Pg.94]    [Pg.844]    [Pg.431]    [Pg.229]    [Pg.148]    [Pg.551]    [Pg.552]    [Pg.194]    [Pg.340]    [Pg.124]    [Pg.352]    [Pg.23]    [Pg.17]    [Pg.90]    [Pg.297]    [Pg.627]    [Pg.293]    [Pg.712]    [Pg.15]    [Pg.387]    [Pg.200]    [Pg.23]    [Pg.563]    [Pg.438]    [Pg.220]    [Pg.489]    [Pg.1245]    [Pg.1790]    [Pg.52]    [Pg.487]    [Pg.976]    [Pg.2443]    [Pg.45]    [Pg.712]    [Pg.500]   


SEARCH



Redox control

Redox state

© 2024 chempedia.info