Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Redox potentials biology

The second category of factors that affect corrosion includes temperature, pressure, metallurgy, redox potential, biological effects, velocity, and galvanic effects [4,5]. In general, corrosion rates increase with increasing temperature or pressure. Both temperature and pressure affect reaction rates and gas solubility. Temperature will also affect the formation of protective scales. [Pg.176]

Many experimental approaches have been appHed to the deterrnination of stabihty constants. Techniques include pH titrations, ion exchange, spectrophotometry, measurement of redox potentials, polarimetry, conductometric titrations, solubiUty deterrninations, and biological assay. Details of these methods can be found in the Hterature (9,10). [Pg.385]

Therefore, polysulfide ions play a major role in the global geological and biological sulfur cycles [1, 2]. In addition, they are reagents in important industrial processes, e.g., in desulfurization and paper production plants. It should be pointed out however that only sulfide, elemental sulfur and sulfate are thermodynamically stable under ambient conditions in the presence of water, their particular stabihty region depending on the redox potential and the pH value [3] ... [Pg.128]

The biological applications of tetrazolium salts are the subject of a textbook.96 Kuhn and Jerchel74 were the first to recognize the utility of tetrazolium salts as indicators in redox enzyme activity, particularly those of the various dehydrogenases. It has been recognized449 that this particular utility of tetrazolium salts is related to the proximity of their redox potentials to those of the hydride transfer systems in biology450 such as nicotinamide adenine dinucleotide, NAD, and its phosphate analogue, NADP. [Pg.274]

Other factors affecting performance include the presence of toxic material, the redox potential, salinity of the groundwater, light intensity, hydraulic conductivity of the soil, and osmotic potential. The rate of biological treatment is higher for more permeable soils or aquifers. Bioremediation is not applicable to soils with very low permeability, because it would take a long time for the cleanup process unless many more wells were installed, thus raising the cost. [Pg.714]

A major consideration before the ligand exchange equilibria can be considered with reference to biological systems is the stability of a particular oxidation state in the biological medium. Low-spin complexes undergo rapid one-electron oxidation and reduction. As a biological system operates at a low redox potential, say —0.5 to 0.0 volts, reduced, i.e. low valence, states of the metals are to be expected. The metal complexes, Ru, Os, Rh, Ir, Pd, Pt and Au should be reduced to the metallic state in fact but for the slow speed of this reduction. The metals of Fig. 6 will tend to go to the following redox states ... [Pg.16]

The unique suitability of iron comes from the extreme variability of the Fe2+/Fe3+ redox potential, which can be fine tuned by well-chosen ligands, so that iron sites can encompass almost the entire biologically significant range of redox potentials, from about —0.5 V to about +0.6 V. [Pg.45]

Iron or copper complexes will catalyse Fenton chemistry only if two conditions are met simultaneously, namely that the ferric complex can be reduced and that the ferrous complex has an oxidation potential such that it can transfer an electron to H2O2. However, we must also add that this reasoning supposes that we are under standard conditions and at equilibrium, which is rarely the case for biological systems. A simple example will illustrate the problem whereas under standard conditions reaction (2) has a redox potential of —330 mV (at an O2 concentration of 1 atmosphere), in vivo with [O2] = 3.5 x 10 5 M and [O2 ] = 10 11 M the redox potential is +230 mV (Pierre and Fontecave, 1999). [Pg.48]

Dithiothreitol (DTT) and dithioerythritol (DTE) are the trans and cis isomers of the compound 2,3-dihydroxy-1,4-dithiolbutane. The reducing potential of these versatile reagents was first described by Cleland in 1964. Due to their low redox potential (—0.33 V) they are able to reduce virtually all accessible biological disulfides and maintain free thiols in solution despite the presence of oxygen. The compounds are fully water-soluble with very little of the offensive odor of the 2-mercaptoethanol they were meant to replace. Since Cleland s original report, literally thousands of references have cited the use of mainly DTT for the reduction of cystine and other forms of disulfides. [Pg.88]

As mentioned previously, siderophores must selectively bind iron tightly in order to solubilize the metal ion and prevent hydrolysis, as well as effectively compete with other chelators in the system. The following discussion will address in more detail the effect of siderophore structure on the thermodynamics of iron binding, as well as different methods for measuring and comparing iron-siderophore complex stability. The redox potentials of the ferri-siderophore complexes will also be addressed, as ferri-siderophore reduction may be important in the iron uptake process in biological systems. [Pg.186]

Another factor that can possibly affect the redox potential in biological systems is the presence of secondary chelating agents that can participate in coupled equilibria (3). When other chelators are present, coupled equilibria involving iron-siderophore redox occur and a secondary ligand will cause the siderophore complex effective redox potential to shift. The decrease in stability of the iron-siderophore complex upon reduction results in a more facile release of the iron. Upon release, the iron(II) is available for complexation by the secondary ligand, which results in a corresponding shift in the redox equilibrium toward production of iron(II). In cases where iron(II) is stabilized by the secondary chelators, there is a shift in the redox potential to more positive values, as shown in Eqs. (42)—(45). [Pg.217]

Though accelerating effect of redox mediators is proved, differences in electrochemical factors between mediator and azo dye is a limiting factor for this application. It was reported that redox mediator applied for biological azo dye reduction must have redox potential between the half reactions of the azo dye and the primary electron donor [37], The standard redox potentials for different azo dyes are screened generally between -430 and -180 mV [47],... [Pg.66]

The realization of the widespread occurrence of amino acid radicals in enzyme catalysis is recent and has been documented in several reviews (52-61). Among the catalytically essential redox-active amino acids glycyl [e.g., anaerobic class III ribonucleotide reductase (62) and pyruvate formate lyase (63-65)], tryptophanyl [e.g., cytochrome peroxidase (66-68)], cysteinyl [class I and II ribonucleotide reductase (60)], tyrosyl [e.g., class I ribonucleotide reductase (69-71), photosystem II (72, 73), prostaglandin H synthase (74-78)], and modified tyrosyl [e.g., cytochrome c oxidase (79, 80), galactose oxidase (81), glyoxal oxidase (82)] are the most prevalent. The redox potentials of these protein residues are well within the realm of those achievable by biological oxidants. These redox enzymes have emerged as a distinct class of proteins of considerable interest and research activity. [Pg.158]

The standard redox potential El (standard conditions for the biochemist are 1M oxidant, 1M reductant, 10-7 M [H+], i.e. pH 7 and 25 °C) for most biological redox couples are known. Remember that in this context El refers to the partial reaction written as ... [Pg.98]

Most mechanisms which control biological functions, such as cell respiration and photosynthesis (already discussed in Chapter 5, Section 3.1), are based on redox processes. In particular, as shown again in Figure 1, it is evident that, based on their physiological redox potentials, in photosynthesis a chain of electron carriers (e.g. iron-sulfur proteins, cytochromes and blue copper proteins) provides a means of electron transport which is triggered by the absorption of light. [Pg.539]

The interfacial microenvironment around a microbial community, that is the sum of the physical, chemical, and biological parameters which affect a microorganism, determines whether a particular microorganism will survive and/or metabolize. The occurrence and abundance of microorganisms in an environment are determined by nutrient availability, and various physicochemical factors such as pH, redox potential, temperature, and solid phase texture and moisture. Because a limitation imposed by any one of these factors can inhibit biodegradation, the cause of the persistence of a pollutant is sometimes difficult to pinpoint. The summary follows [39,92,94,97,109,110,172,173,176,189,190, 195,248-252,256-300]. [Pg.358]


See other pages where Redox potentials biology is mentioned: [Pg.433]    [Pg.247]    [Pg.2131]    [Pg.70]    [Pg.178]    [Pg.301]    [Pg.75]    [Pg.67]    [Pg.72]    [Pg.86]    [Pg.363]    [Pg.640]    [Pg.416]    [Pg.1149]    [Pg.153]    [Pg.223]    [Pg.57]    [Pg.59]    [Pg.323]    [Pg.88]    [Pg.251]    [Pg.810]    [Pg.44]    [Pg.423]    [Pg.216]    [Pg.219]    [Pg.65]    [Pg.40]    [Pg.212]    [Pg.212]    [Pg.271]    [Pg.130]    [Pg.286]    [Pg.162]   
See also in sourсe #XX -- [ Pg.549 ]

See also in sourсe #XX -- [ Pg.549 ]




SEARCH



Biological redox proteins, oxidation-reduction potentials

Redox potentials

© 2024 chempedia.info