Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Recycle to Process

Other foundries have investigated the recharging of the entire mass to the remelting furnace (Stephens 1988). Inside the furnace, calcium hydroxide forms in the slag as the recycled calcium carbide either removes additional sulfur or is directly oxidized. While this method has been successful, much work still remains to be done. For example, it is not known if the calcium sulfide stays with the slag or if the sulfur is emitted in the flue gas. Initial tests indicate that the sulfur does not concentrate in the metal so that product quality is not affected. [Pg.27]

Foundries that generate furnace dusts that are EP-Toxic due to lead and cadmium have found that by carefully mixing the dusts with water treated calcium carbide desulfurization slag (which contains calcium hydroxide), they may be rendered non-EP-Toxic. Great care must be taken with this method since at high pH levels the lead may leach out. In addition to this problem, the effect of other hazardous materials in the dust and in the slag may still render this waste as hazardous (Stephens 1988). [Pg.27]


Waste liquid generated during flushing, repairs, arul testing is to be collected and recycled to process or treated in ETP. [Pg.107]

The operation could be at normal atmospheric pressure or under vacuum. The evaporators are single effect units or multiple effect types, whieh operate under progressively increasing vacumn. If the evaporating liquor starts boiling violently, or acidic mist is thrown out, or excessive frothing may result, then a closed-type evaporator is preferable. It should be provided with a scrubber, an entrainment separator (stainless steel pad or glass fibre demister as per need) and an ID fan. Liquid droplets scrubbed and arrested by demister should be recycled to process if possible. [Pg.111]

If a vapor from the phase split is either predominantly product or predominantly byproduct, then it is removed from the process. If the vapor contains predominantly unconverted feed material, it is normally recycled to the reactor. In these cases, there is no need to carry out any separation on the vapor. [Pg.108]

The hydrogen in the vapor stream is a reactant and hence should be recycled to the reactor inlet (Fig. 4.8). The methane enters the process as a feed impurity and is also a byproduct from the primary reaction and must be removed from the process. The hydrogen-methane separation is likely to be expensive, but the methane can be removed from the process by means of a purge (see Fig. 4.8). [Pg.110]

If air is used, then a single pass with respect to each feedstock is used and no recycle to the reactor (Fig. 10.4a).-Thus the process operates at near stoichiometric feed rates to achieve high conversions. Typically, between 0.7 and 1.0 kg of vent gases are emitted per kilogram of dichloroethane produced. ... [Pg.283]

If steam is used as stripping agent, either live steam or a reboiler can be used. The use of live steam increases the effluent volume. The volatile organics are taken overhead, condensed, and recycled to the process, if possible. If recycling is not possible, then further treatment or disposal is necessary. [Pg.313]

In two stages with recycle to the second stage, the conversion per pass is approximately 50 wt. % and the selectivity to middle distillates is maximal 75 to 80 wt. %. However, the investment is clearly higher and is justified only when feedstocks are difficult to convert and that their content in nitrogen is high. Figure 10.11 represents two variants of the hydrocracking process. [Pg.392]

Manufacture. For the commercial production of DPXN (di-/)-xylylene) (3), two principal synthetic routes have been used the direct pyrolysis of -xylene (4, X = Y = H) and the 1,6-Hofmaim elimination of ammonium (HNR3 ) from a quaternary ammonium hydroxide (4, X = H, Y = NR3 ). Most of the routes to DPX share a common strategy PX is generated at a controlled rate in a dilute medium, so that its conversion to dimer is favored over the conversion to polymer. The polymer by-product is of no value because it can neither be recycled nor processed into a commercially useful form. Its formation is minimised by careful attention to process engineering. The chemistry of the direct pyrolysis route is shown in equation 1 ... [Pg.430]

In the one-stage process (Fig. 2), ethylene, oxygen, and recycle gas are directed to a vertical reactor for contact with the catalyst solution under slight pressure. The water evaporated during the reaction absorbs the heat evolved, and make-up water is fed as necessary to maintain the desired catalyst concentration. The gases are water-scmbbed and the resulting acetaldehyde solution is fed to a distUlation column. The tad-gas from the scmbber is recycled to the reactor. Inert materials are eliminated from the recycle gas in a bleed-stream which flows to an auxdiary reactor for additional ethylene conversion. [Pg.52]

The catalytic vapor-phase oxidation of propylene is generally carried out in a fixed-bed multitube reactor at near atmospheric pressures and elevated temperatures (ca 350°C) molten salt is used for temperature control. Air is commonly used as the oxygen source and steam is added to suppress the formation of flammable gas mixtures. Operation can be single pass or a recycle stream may be employed. Recent interest has focused on improving process efficiency and minimizing process wastes by defining process improvements that use recycle of process gas streams and/or use of new reaction diluents (20-24). [Pg.123]

The bottoms from the solvent recovery (or a2eotropic dehydration column) are fed to the foremns column where acetic acid, some acryflc acid, and final traces of water are removed overhead. The overhead mixture is sent to an acetic acid purification column where a technical grade of acetic acid suitable for ester manufacture is recovered as a by-product. The bottoms from the acetic acid recovery column are recycled to the reflux to the foremns column. The bottoms from the foremns column are fed to the product column where the glacial acryflc acid of commerce is taken overhead. Bottoms from the product column are stripped to recover acryflc acid values and the high boilers are burned. The principal losses of acryflc acid in this process are to the aqueous raffinate and to the aqueous layer from the dehydration column and to dimeri2ation of acryflc acid to 3-acryloxypropionic acid. If necessary, the product column bottoms stripper may include provision for a short-contact-time cracker to crack this dimer back to acryflc acid (60). [Pg.154]

Esterifica.tlon. The process flow sheet (Fig. 4) outlines the process and equipment of the esterification step in the manufacture of the lower acryflc esters (methyl, ethyl, or butyl). For typical art, see References 69—74. The part of the flow sheet containing the dotted lines is appropriate only for butyl acrylate, since the lower alcohols, methanol and ethanol, are removed in the wash column. Since the butanol is not removed by a water or dilute caustic wash, it is removed in the a2eotrope column as the butyl acrylate a2eotrope this material is recycled to the reactor. [Pg.154]

The stoichiometric and the catalytic reactions occur simultaneously, but the catalytic reaction predominates. The process is started with stoichiometric amounts, but afterward, carbon monoxide, acetylene, and excess alcohol give most of the acrylate ester by the catalytic reaction. The nickel chloride is recovered and recycled to the nickel carbonyl synthesis step. The main by-product is ethyl propionate, which is difficult to separate from ethyl acrylate. However, by proper control of the feeds and reaction conditions, it is possible to keep the ethyl propionate content below 1%. Even so, this is significantly higher than the propionate content of the esters from the propylene oxidation route. [Pg.155]

If a linear mbber is used as a feedstock for the mass process (85), the mbber becomes insoluble in the mixture of monomers and SAN polymer which is formed in the reactors, and discrete mbber particles are formed. This is referred to as phase inversion since the continuous phase shifts from mbber to SAN. Grafting of some of the SAN onto the mbber particles occurs as in the emulsion process. Typically, the mass-produced mbber particles are larger (0.5 to 5 llm) than those of emulsion-based ABS (0.1 to 1 llm) and contain much larger internal occlusions of SAN polymer. The reaction recipe can include polymerization initiators, chain-transfer agents, and other additives. Diluents are sometimes used to reduce the viscosity of the monomer and polymer mixture to faciUtate processing at high conversion. The product from the reactor system is devolatilized to remove the unreacted monomers and is then pelletized. Equipment used for devolatilization includes single- and twin-screw extmders, and flash and thin film evaporators. Unreacted monomers are recovered for recycle to the reactors to improve the process yield. [Pg.204]

The ion-exclusion process for sucrose purification has been practiced commercially by Firm Sugar (104). This process operates in a cycHc-batch mode and provides a sucrose product that does not contain the highly molassogenic salt impurities and thus can be recycled to the crystallizers for additional sucrose recovery. [Pg.302]

Compounds having low vapor pressures at room temperature are treated in water-cooled or air-cooled condensers, but more volatile materials often requite two-stage condensation, usually water cooling followed by refrigeration. Minimising noncondensable gases reduces the need to cool to extremely low dew points. Partial condensation may suffice if the carrier gas can be recycled to the process. Condensation can be especially helpful for primary recovery before another method such as adsorption or gas incineration. Both surface condensers, often of the finned coil type, and direct-contact condensers are used. Direct-contact condensers usually atomize a cooled, recirculated, low vapor pressure Hquid such as water into the gas. The recycle hquid is often cooled in an external exchanger. [Pg.389]

The ammonium chloride process, developed by Asahi Glass, is a variation of the basic Solvay process (9—11). It requires the use of soHd sodium chloride but obtains higher sodium conversions (+90%) than does the Solvay process. This is especially important ia Japan, where salt is imported as a soHd. The major difference from the Solvay process is that here the ammonium chloride produced is crystallized by cooling and through the addition of soHd sodium chloride. The resulting mother Hquor is then recycled to dissolve additional sodium chloride. The ammonium chloride is removed for use as rice paddy fertilizer. Ammonia makeup is generally suppHed by an associated synthesis plant. [Pg.524]

The boric and sulfuric acids are recycled to a HBF solution by reaction with CaF2. As a strong acid, fluoroboric acid is frequently used as an acid catalyst, eg, in synthesizing mixed polyol esters (29). This process provides an inexpensive route to confectioner s hard-butter compositions which are substitutes for cocoa butter in chocolate candies (see Chocolate and cocoa). Epichlorohydrin is polymerized in the presence of HBF for eventual conversion to polyglycidyl ethers (30) (see Chlorohydrins). A more concentrated solution, 61—71% HBF, catalyzes the addition of CO and water to olefins under pressure to form neo acids (31) (see Carboxylic acids). [Pg.165]

The spent hydrogen fluoride layer, which contains water and sodium bifluoride, from this process is treated with sulfur trioxide or 65% oleum, and hydrogen fluoride is distilled for recycle to the next batch (176,177). [Pg.322]


See other pages where Recycle to Process is mentioned: [Pg.437]    [Pg.27]    [Pg.30]    [Pg.245]    [Pg.246]    [Pg.246]    [Pg.290]    [Pg.507]    [Pg.486]    [Pg.572]    [Pg.437]    [Pg.27]    [Pg.30]    [Pg.245]    [Pg.246]    [Pg.246]    [Pg.290]    [Pg.507]    [Pg.486]    [Pg.572]    [Pg.109]    [Pg.283]    [Pg.1058]    [Pg.2701]    [Pg.51]    [Pg.240]    [Pg.302]    [Pg.446]    [Pg.447]    [Pg.447]    [Pg.448]    [Pg.459]    [Pg.503]    [Pg.523]    [Pg.523]    [Pg.18]    [Pg.164]    [Pg.164]    [Pg.216]    [Pg.219]    [Pg.282]   


SEARCH



Processing recycling

Recycle processes

Recycling process

© 2024 chempedia.info