Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Recycle bottom product

Ethylene Stripping. The acetylene absorber bottom product is routed to the ethylene stripper, which operates at low pressure. In the bottom part of this tower the loaded solvent is stripped by heat input according to the purity specifications of the acetylene product. A lean DMF fraction is routed to the top of the upper part for selective absorption of acetylene. This feature reduces the acetylene content in the recycle gas to its minimum (typically 1%). The overhead gas fraction is recycled to the cracked gas compression of the olefin plant for the recovery of the ethylene. [Pg.391]

This ammonia is recycled to the reactor via a compressor and a heater. Liquid ammonia is used as reflux on the top of the absorber. The net amount of carbon dioxide formed in the reactor is removed as bottom product from the absorber in the form of a weak ammonium carbamate solution, which is concentrated in a desorber-washing column system. The bottom product of this washing column is a concentrated ammonium carbamate solution which is reprocessed in a urea plant. The top product, pure ammonia, is Hquefted and used as reflux together with Hquid makeup ammonia. The desorber bottom product, practically pure water, is used in the quench system in addition to the recycled mother Hquor. [Pg.373]

The propylene fractionator operates at a pressure of 1.8 to 2.0 MPa with more than 160 trays required for a high purity propylene product. Often a two-tower design is employed when polymer grade (99.5%+) is required. A pasteurization section may also be used when high purity is required. The bottoms product contains mainly propane that can be recycled to the cracking heaters or used as fuel. Typical tower dimensions and internals for a 450,000 t/yr ethylene plant with naphtha feed are summarized in Table 7. [Pg.441]

One of the components, A (not necessarily the most volatile species of the original mixture), is withdrawn as an essentially pure distillate stream. Because the solvent is nonvolatile, at most a few stages above the solvent-feed stage are sufficient to rectify the solvent from the distillate. The bottoms product, consisting of B and the solvent, is sent to the recoveiy column. The distillate from the recoveiy column is pure B, and the solvent-bottoms product is recycled back to the extractive column. [Pg.1313]

A sidestream of material boiling between about 650°F/925°F is withdrawn as cat feed. This stream is made up of virgin material from the crude and recycle cat products. When it is available additional extraneous virgin feed also may be blended into the cat feed stream. Fractionator bottoms are withdrawn and may be sent to fuel oil. [Pg.21]

In the UOP process (Figure 10-5), fresh propylene feed is combined with fresh and recycled benzene, then passed through heat exchangers and a steam preheater before being charged to the reactor.The effluent is separated, and excess benzene recycled. Cumene is finally clay treated and fractionated. The bottom product is mainly diisopropyl benzene, which is reacted with benzene in a transalkylation section ... [Pg.269]

The excess benzene is distilled over a column and used as recycled benzene in the alkylation. In the bottom of the stripping section of the column the raw alkylates, consisting of LAB, heavy alkylate, and excess paraffin, are separated. This mixture is fed to a second column in which the excess paraffin is separated off. The actual purification of the LAB follows in a third column. The bottom product, heavy alkylate, consisting mainly of dialkylbenzene is also separated. Heavy alkylates are used in various applications. Both the paraffin and the LAB column are operated under vacuum. [Pg.70]

Figure 33.5 shows the composition, temperature and reaction rate profiles in the reactive distillation column. The ester product with traces of methanol is the bottom product, whereas a mixture of water and fatty acid is the top product. This mixture is then separated in the additional distillation column and the acid is refluxed back to the RDC. The fatty ester is further purified in a small evaporator and methanol is recycled back to the RDC (Figures 33.3 and 33.4). [Pg.296]

Water and ethanol form a low boiling point azeotrope. So, water cannot be completely separated from ethanol by straight distillation. To produce absolute (100 per cent) ethanol it is necessary to add an entraining agent to break the azeotrope. Benzene is an effective entrainer and is used where the product is not required for food products. Three columns are used in the benzene process. Column 1. This column separates the ethanol from the water. The bottom product is essentially pure ethanol. The water in the feed is carried overhead as the ternary azeotrope of ethanol, benzene and water (24 per cent ethanol, 54 per cent benzene, 22 per cent water). The overhead vapour is condensed and the condensate separated in a decanter into, a benzene-rich phase (22 per cent ethanol, 74 per cent benzene, 4 per cent water) and a water-rich phase (35 per cent ethanol, 4 per cent benzene, 61 per cent water). The benzene-rich phase is recycled to the column as reflux. A benzene make-up stream is added to the reflux to make good any loss of benzene from the process. The water-rich phase is fed to the second column. [Pg.190]

Column 2. This column recovers the benzene as the ternary azeotrope and recycles it as vapour to join the overhead vapour from the first column. The bottom product from the column is essentially free of benzene (29 per cent ethanol, 51 per cent water). This stream is fed to the third column. [Pg.190]

Column 3. In this column the water is separated and sent to waste treatment. The overhead product consists of the azeotropic mixture of ethanol and water (89 per cent ethanol, 11 per cent water). The overheads are condensed and recycled to join the feed to the first column. The bottom product is essentially free of ethanol. [Pg.190]

In fact, it is possible to carry out the separation of acetone and heptane using benzene as entrainer in a different sequence to that shown in Figure 12.21 by separating the acetone in the first column as an overhead product. The heptane is separated in the second column as the bottom product with the overhead of benzene from the second column being recycled. [Pg.247]

The recovery, regeneration, and repeated reuse of the active catalyst are of prime importance in substantially reducing the overall cost of coal liquefaction. The used catalysts usually remain in the bottoms products, which consist of nondistillable asphaltenes, preasphaltenes, unreacted coal, and minerals. The asphaltenes and preasphaltenes can be recycled with the catalyst in bottoms recycle processes. However, unreacted coal and minerals, if present in the recycle, dilute the catalyst and limit the amount of allowable bottoms recycle because they unnecessarily increase the slurry viscosity and corrosion problems. Hence, these useless components should be removed or at least reduced in concentration. If the catalyst is deactivated, reactivation becomes necessary before reuse. Thus, the design of means for catalyst regeneration and recycle is necessary for an effective coal liquefaction process. Several approaches to achieving these goals are discussed below. [Pg.72]

Complete removal of inert macerals and minerals from the starting coal and complete conversion of reactive macerals at the expense of excess production of hydrocarbon gases. In this situation, the recycled bottoms consist of only catalyst and heavy coal liquid products. Reactor designs should attempt to avoid catalyst deactivation, providing immediate reuse of the catalyst. [Pg.72]

One way to utilize a stabilizer Is illustrated In Figure 5, which is simply the Figure 4 process with the liquids from K and 4 diverted to a stabilizer. The stabilizer could be either refluxed or cold-feed, as a further variation. This process reduces the recycle load significantly in the two lower compression stages, as compared to the previous processes. This process also provides an additional control for the crude oil vapor pressure which can be independently varied, since the fractionator split can be controlled and the fractionator bottom product is blended with the crude stream. It may be desirable to blend this stream into separator 1... [Pg.82]

Solvent-Refined Coal Process. In the 1920s the anthracene oil fraction recovered from pyrolysis, or coking, of coal was utilized to extract 35—40% of bituminous coals at low pressures for the purpose of manufacturing low cost newspaper inks (113). Tetralin was found to have higher solvent power for coals, and the I. G. Farben Pott-Broche process (114) was developed, wherein a mixture of cresol and tetralin was used to dissolve ca 75% of brown coals at 13.8 MPa (2000 psi) and 427°C. The extract was filtered, and the filtrate vacuum distilled. The overhead was distilled a second time at atmospheric pressure to separate solvent, which was recycled to extraction, and a heavier liquid, which was sent to hydrogenation. The bottoms product from vacuum distillation, or solvent-extracted coal, was carbonized to produce electrode carbon. Filter cake from the filters was coked in rotary kilns for tar and oil recovery. A variety of liquid products were obtained from the solvent extraction-hydrogenation system (113). A similar process was employed in Japan during Wodd War II to produce electrode coke, asphalt (qv), and carbonized fuel briquettes (115). [Pg.89]

Bottoms of T-3 proceeds to the top of stripper T-4. Vapor overhead from T-4 is recycled to the middle of T-3. The bottoms product (containing 99.5% oxygen) is sent partly to liquid storage and the remainder to precooler E-l where it is vaporized. Then it is compressed to 150 psig in a two-stage compressor JJ-2 and sent to the battery limits. Compressor JJ-2 has inter- and aftercoolers and knockout drums for condensate. [Pg.37]

One possible arrangement for a hydrofluoric acid alkylation unit is shown schematically in Fig. 1. Feedstocks are pretreated, mainly to remove sulfur compounds. The hydrocarbons and acid are intimately contacted in the reactor to form an emulsion, within which the reaction occurs. The reaction is exothermic and temperature must be controlled by cooling water. After reaction, the emulsion is allowed to separate in a settler, the hydrocarbon phase rising to the top. The acid phase is recycled. Hydrocarbons from the settler pass to a fractionator which produces an overhead stream rich in isobutane. The isobutane is recycled to the reactor. The alkylate is the bottom product of tile fraetionater (isostripper). If the olefin teed contains propylene and propane, some of the isoshipper overhead goes to a depropanizer where propane is separated as an overhead... [Pg.55]

The process applied in a conventional visbreaking unit in which a proprietary additive and water are added to the feedstock/recycled bottoms prior to the soaker reduce the inventory of heavier feedstocks and products. The presence of the oil-soluble dual catalyst (Carrazza et al., 1997a, 1997b) and water prevents the buildup of coke precursors and deposition of sediment that often occurs during visbreaking. The catalyst may be supported on support material or mixed directly with the feedstock. The first metal is chosen from the nonnoble Group VIII metals and the second is an alkali metal such as potassium or sodium. [Pg.357]

Figure 9.20(b) illustrates the use of pervaporation with two distillation columns to break a binary azeotrope such as benzene/cyclohexane. The feed is supplied at the azeotropic composition and is split into two streams by the pervaporation unit. The residue stream, rich in cyclohexane, is fed to a distillation column that produces a pure bottom product and an azeotropic top stream, which is recycled to the pervaporation unit. Similarly, the other distillation column treats the benzene-rich stream to produce a pure benzene product and an azeotropic mixture that is returned to the pervaporation unit. [Pg.385]

A possible solution is to gasify the more dilute vacuum tower bottoms product in an oxygen blown gasifier and to convert the excess synthesis gas to methanol. In those cases where a Flexicoker is used the heavy scrubber liquids could be recycled to extinction. Therefore, the plant products are SNG, naphtha, 300-800°F distillate and methanol. All of these products are of high quality or can be hydrotreated to achieve high quality. As a result, they could be easily integrated into the utility fuel mix with a minimum amount of disruption or special product handling facilities. [Pg.27]

At steady state, the presence of a large molar liquid recycle R implies an equally large molar vapor boilup V. On the other hand, the feed flow rate F, the distillate flow rate D, and the bottom-product flow rate B are of the same order of magnitude and much smaller than the flow rates of the internal streams. Therefore, we can define e = (Fs/Rs) -C 1 and k = Vs/Rs = 0(1), where the subscript s refers to the nominal steady state. Let us also define the scaled vapor and reflux flow... [Pg.183]

Dynamic optimisation of this type of periodic operation was first attempted and reported in the literature by Mayur et al. (1970), who considered the initial charge to the reboiler as a fresh feed stock mixed with the recycled off-cut material from the previous distillation task. Each batch cycle is then operated in two distillation tasks. During the Task 1, a quantity of overhead distillate meeting the light product specification is collected. The residue is further distilled off in Task 2 until it meets the bottom product specification. The overhead during Task 2 meets neither specifications (but the composition is usually kept close to the that of the initial charge for thermodynamic reasons) and is recycled as part of the charge for the next batch. As the batch cycle is repeated a quasi-steady state mode of operation is attained which is characterised by the identical amount and composition of the recycle (from the previous batch) and the off-cut (from the current batch). Luyben (1988) indicates that the quasi-steady state mode is achieved after three or four such cycles. [Pg.230]

Reduction in hatch time For a given fresh feed and a given separation, the column performance is measured in terms of minimum batch time required to achieve a desired separation (specified top product purity (x D]) and bottom product purity (x B2) for binary mixture). Then an optimal amount and composition of recycle, subject to physical bounds (maximum reboiler capacity, maximum allowable purity of the off-cut) are obtained in an overall minimum time to produce the same separation (identical top and bottom products as in the... [Pg.231]


See other pages where Recycle bottom product is mentioned: [Pg.510]    [Pg.376]    [Pg.510]    [Pg.376]    [Pg.89]    [Pg.284]    [Pg.46]    [Pg.374]    [Pg.414]    [Pg.190]    [Pg.198]    [Pg.1311]    [Pg.1312]    [Pg.1312]    [Pg.1319]    [Pg.107]    [Pg.165]    [Pg.985]    [Pg.235]    [Pg.236]    [Pg.237]    [Pg.205]    [Pg.55]    [Pg.131]    [Pg.7]    [Pg.181]    [Pg.52]   
See also in sourсe #XX -- [ Pg.505 ]




SEARCH



Bottom production

Bottoms product

Recycled products

© 2024 chempedia.info