Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactors reaction rate

The activated Ba(OH)2 was used as a basic catalyst for the Claisen-Schmidt (CS) condensation of a variety of ketones and aromatic aldehydes (288). The reactions were performed in ethanol as solvent at reflux temperature. Excellent yields of the condensation products were obtained (80-100%) within 1 h in a batch reactor. Reaction rates and yields were generally higher than those reported for alkali metal hydroxides as catalysts. Neither the Cannizaro reaction nor self-aldol condensation of the ketone was observed, a result that was attributed to the catalyst s being more nucleophilic than basic. Thus, better selectivity to the condensation product was observed than in homogeneous catalysis under similar conditions. It was found that the reaction takes place on the catalyst surface, and when the reactants were small ketones, the rate-determining step was found to be the surface reaction, whereas with sterically hindered ketones the adsorption process was rate determining. [Pg.289]

In order to quantify chemical reactions and to describe the performance of chemical reactors, reaction rates are the key information required. [Pg.360]

Baeyer-Vllliger oxidations, effective catalyst of ketones, 139 Batch reactor, reaction rates, 69-70 Benzoquinone-hydroqulnone polymers applications, 145 attachment to polymeric surface, 145-147 Benzylalcohol, cleavage products data, 94f... [Pg.285]

Fig. 13-25 Lactone hydrogenation in a trickie-bed reactor reaction rate profiles... Fig. 13-25 Lactone hydrogenation in a trickie-bed reactor reaction rate profiles...
In solution chemistry it is customary to express the reaction rates in terms of concentrations if the reactants and products are dissolved and well mixed and if the reactions are not diffusion-limited. This cannot be done in solids because solids are never perfectly stirred reactors. Reaction rates in solids do not have the same or similar relationships to the concentrations as reactions in liquids but they are diffusion-limited. Solid state reactions have other types of reaction order than reactions in liquid solution and the kinetic rules in solid state chemistry are different from those of reactions between molecules. The reaction rates depend on morphologies, the geometry of the reaction front, the diffusivities of the reacting species, the possibilities of nucleation, and the anisotropy of crystallites. In summary ... [Pg.171]

In all the studies reported here for CO oxidation, GC analysis of the efQuent stream was carried out using a HayeSep Q column at room temperature (RT) in a GC (Varian 3300) equipped with a TC detector. The conversion data were reproducible within 5% accuracy. Reaction rates were calculated at various temperatures at less than 5% conversion to fulfill differential conversion operation in the 10-well reactor. In the recycle reactor, reaction rates were calculated in the whole conversion range due to the perfect mixing approximation obtained via the use of a large recycle ratio (> 20). Turnover frequencies were calculated from the rate and the dispersion values obtained for the freshly reduced catalysts and plotted versus 1/T to obtain activation energies. [Pg.409]

The mean residence time is thus of crucial importance. Whether equation (7.5) or (7.6) is used there is clearly a simple relationship between size of reactor, reaction rate, extent of reaction and initial concentration. Thus knowing any three allows the fourth to be found directly. In design, the feed conditions and the required extent of reaction will generally be fixed and thus the equation will be used to obtain the required size. (The economic conversion will be dependent upon reactor cost, product sales price and a number of other factors. For fixed feed conditions the equation may be used to investigate how reactor costs, and ultimately profitability, are likely to vary with the extent of reaction.)... [Pg.144]

Component balance for the mixers Total balance for the splitters Component balance for the splitters Total balance for the reactors Component balance for the reactors Reaction rates ... [Pg.474]

Fixed-bed reactors in the form of gas absorption equipment are used commonly for noncatalytic gas-liquid reactions. Here the packed bed serves only to give good contact between the gas and liquid. Both cocurrent and countercurrent operations are used. Countercurrent operation gives the highest reaction rates. Cocurrent operation is preferred if a short liquid residence time is required. [Pg.58]

The microscopic understanding of tire chemical reactivity of surfaces is of fundamental interest in chemical physics and important for heterogeneous catalysis. Cluster science provides a new approach for tire study of tire microscopic mechanisms of surface chemical reactivity [48]. Surfaces of small clusters possess a very rich variation of chemisoriDtion sites and are ideal models for bulk surfaces. Chemical reactivity of many transition-metal clusters has been investigated [49]. Transition-metal clusters are produced using laser vaporization, and tire chemical reactivity studies are carried out typically in a flow tube reactor in which tire clusters interact witli a reactant gas at a given temperature and pressure for a fixed period of time. Reaction products are measured at various pressures or temperatures and reaction rates are derived. It has been found tliat tire reactivity of small transition-metal clusters witli simple molecules such as H2 and NH can vary dramatically witli cluster size and stmcture [48, 49, M and 52]. [Pg.2393]

In practical applications, gas-surface etching reactions are carried out in plasma reactors over the approximate pressure range 10 -1 Torr, and deposition reactions are carried out by molecular beam epitaxy (MBE) in ultrahigh vacuum (UHV below 10 Torr) or by chemical vapour deposition (CVD) in the approximate range 10 -10 Torr. These applied processes can be quite complex, and key individual reaction rate constants are needed as input for modelling and simulation studies—and ultimately for optimization—of the overall processes. [Pg.2926]

Although the Arrhenius equation does not predict rate constants without parameters obtained from another source, it does predict the temperature dependence of reaction rates. The Arrhenius parameters are often obtained from experimental kinetics results since these are an easy way to compare reaction kinetics. The Arrhenius equation is also often used to describe chemical kinetics in computational fluid dynamics programs for the purposes of designing chemical manufacturing equipment, such as flow reactors. Many computational predictions are based on computing the Arrhenius parameters. [Pg.164]

A reactor system is shown in Figure 2 to which the HAZOP procedure can be appHed. This reaction is exothermic, and a cooling system is provided to remove the excess energy of reaction. If the cooling flow is intermpted, the reactor temperature increases, leading to an increase in the reaction rate and the heat generation rate. The result could be a mnaway reaction with a subsequent increase in the vessel pressure possibly leading to a mpture of the vessel. [Pg.471]

Preparation of the polymer can be carried out in glass equipment at atmospheric pressure at temperatures typically above 100°C, but the higher pressures in an autoclave result in much faster reaction rates. Each polymer molecule which used butanol as a starter contains one hydroxyl end group as it comes from the reactor diol-started polymers contain two terminal hydroxyls. Whereas a variety of reactions can be carried out at this remaining hydroxyl to form esters, ethers, or urethanes, this is normally not done and therefore lubricant fluids contain at least one terminal hydroxyl group (36). [Pg.245]

Figure 8 shows the characteristic sawtooth temperature profile which represents the thermodynamic inefficiency of this reactor type as deviations from the maximum reaction rate. Catalyst productivity is further reduced because not all of the feed gas passes through all of the catalyst. However, the quench converter has remained the predominant reactor type with a proven record of reflabiUty. [Pg.279]

Because the highest possible interfacial area is desired for the heterogeneous reaction mixture, advances have also been made in the techniques used for mixing the two reaction phases. Several jet impingement reactors have been developed that are especially suited for nitration reactions (14). The process boosts reaction rates and yields. It also reduces the formation of by-products such as mono-, di-, and trinitrophenol by 50%. First Chemical (Pascagoula, Mississippi) uses this process at its plant. Another technique is to atomize the reactant layers by pressure injection through an orifice nozzle into a reaction chamber (15). The technique uses pressures of typically 0.21—0.93 MPa (30—135 psi) and consistendy produces droplets less than 1 p.m in size. The process is economical to build and operate, is safe, and leads to a substantially pure product. [Pg.65]

Because the ammonia synthesis reaction is an equiUbrium, the quantity of ammonia depends on temperature, pressure, and the H2 to-N2 ratio. At 500°C and 20.3 MPa (200 atm), the equiUbrium mixture contains 17.6% ammonia. The ammonia formed is removed from the exit gases by condensation at about —20° C, and the gases are recirculated with fresh synthesis gas into the reactor. The ammonia must be removed continually as its presence decreases both the equiUbrium yield and the reaction rate by reducing the partial pressure of the N2—H2 mixture. [Pg.84]

The analysis of steady-state and transient reactor behavior requires the calculation of reaction rates of neutrons with various materials. If the number density of neutrons at a point is n and their characteristic speed is v, a flux effective area of a nucleus as a cross section O, and a target atom number density N, a macroscopic cross section E = Na can be defined, and the reaction rate per unit volume is R = 0S. This relation may be appHed to the processes of neutron scattering, absorption, and fission in balance equations lea ding to predictions of or to the determination of flux distribution. The consumption of nuclear fuels is governed by time-dependent differential equations analogous to those of Bateman for radioactive decay chains. The rate of change in number of atoms N owing to absorption is as follows ... [Pg.211]

The use of alkali or alkaline-earth sulfides cataly2es the reaction so that it is complete in a few hours at 150—160°C use of aluminum chloride as the catalyst gives a comparable reaction rate at 115°C. When an excess of sulfur is used, the product can be distilled out of the reactor, and the residue of sulfur forms part of the charge in the following batch reaction. The reaction is carried out in a stainless steel autoclave, and the yield is better than 98% based on either reactant. Phosphoms sulfochloride is used primarily in the manufacture of insecticides (53—55), such as Parathion. [Pg.371]

The reaction is exothermic reaction rates decrease with increased carbon number of the oxide (ethylene oxide > propylene oxide > butylene oxide). The ammonia—oxide ratio determines the product spht among the mono-, di-, and trialkanolamines. A high ammonia to oxide ratio favors monoproduction a low ammonia to oxide ratio favors trialkanolamine production. Mono- and dialkanolamines can also be recycled to the reactor to increase di-or trialkanolamine production. Mono- and dialkanolamines can also be converted to trialkanolamines by reaction of the mono- and di- with oxide in batch reactors. In all cases, the reaction is mn with excess ammonia to prevent unreacted oxide from leaving the reactor. [Pg.7]

The principal reactions are reversible and a mixture of products and reactants is found in the cmde sulfate. High propylene pressure, high sulfuric acid concentration, and low temperature shift the reaction toward diisopropyl sulfate. However, the reaction rate slows as products are formed, and practical reactors operate by using excess sulfuric acid. As the water content in the sulfuric acid feed is increased, more of the hydrolysis reaction (Step 2) occurs in the main reactor. At water concentrations near 20%, diisopropyl sulfate is not found in the reaction mixture. However, efforts to separate the isopropyl alcohol from the sulfuric acid suggest that it may be partially present in an ionic form (56,57). [Pg.107]

Reaction and Transport Interactions. The importance of the various design and operating variables largely depends on relative rates of reaction and transport of reactants to the reaction sites. If transport rates to and from reaction sites are substantially greater than the specific reaction rate at meso-scale reactant concentrations, the overall reaction rate is uncoupled from the transport rates and increasing reactor size has no effect on the apparent reaction rate, the macro-scale reaction rate. When these rates are comparable, they are coupled, that is they affect each other. In these situations, increasing reactor size alters mass- and heat-transport rates and changes the apparent reaction rate. Conversions are underestimated in small reactors and selectivity is affected. Selectivity does not exhibit such consistent impacts and any effects of size on selectivity must be deterrnined experimentally. [Pg.509]

Fig. 9. Bubble-wake interactions in a gas—Hquid-soHd reactor (a) soHds concentration profile within bubble-wake domain, where A—A and B—B represent planes through the bubble, vortex, and wake (b) projected impact of interactions on reaction rate as function of particle si2e and Hquid velocity, where (—)... Fig. 9. Bubble-wake interactions in a gas—Hquid-soHd reactor (a) soHds concentration profile within bubble-wake domain, where A—A and B—B represent planes through the bubble, vortex, and wake (b) projected impact of interactions on reaction rate as function of particle si2e and Hquid velocity, where (—)...
Tubular Reactors. The tubular reactor is exceUent for obtaining data for fast thermal or catalytic reactions, especiaHy for gaseous feeds. With sufficient volume or catalyst, high conversions, as would take place in a large-scale unit, are obtained conversion represents the integral value of reaction over the length of the tube. Short tubes or pancake-shaped beds are used as differential reactors to obtain instantaneous reaction rates, which can be computed directly because composition changes can be treated as differential amounts. Initial reaction rates are obtained with a fresh feed. Reaction rates at... [Pg.515]

Catalyst Effectiveness. Even at steady-state, isothermal conditions, consideration must be given to the possible loss in catalyst activity resulting from gradients. The loss is usually calculated based on the effectiveness factor, which is the diffusion-limited reaction rate within catalyst pores divided by the reaction rate at catalyst surface conditions (50). The effectiveness factor E, in turn, is related to the Thiele modulus,

first-order rate constant, a the internal surface area, and the effective diffusivity. It is desirable for E to be as close as possible to its maximum value of unity. Various formulas have been developed for E, which are particularly usehil for analyzing reactors that are potentially subject to thermal instabilities, such as hot spots and temperature mnaways (1,48,51). [Pg.516]

Model Reactions. Independent measurements of interfacial areas are difficult to obtain in Hquid—gas, Hquid—Hquid, and Hquid—soHd—gas systems. Correlations developed from studies of nonreacting systems maybe satisfactory. Comparisons of reaction rates in reactors of known small interfacial areas, such as falling-film reactors, with the reaction rates in reactors of large but undefined areas can provide an effective measure of such surface areas. Another method is substitution of a model reaction whose kinetics are well estabUshed and where the physical and chemical properties of reactants are similar and limiting mechanisms are comparable. The main advantage of employing a model reaction is the use of easily processed reactants, less severe operating conditions, and simpler equipment. [Pg.516]

Scale-Up Principles. Key factors affecting scale-up of reactor performance are nature of reaction zones, specific reaction rates, and mass- and heat-transport rates to and from reaction sites. Where considerable uncertainties exist or large quantities of products are needed for market evaluations, intermediate-sized demonstration units between pilot and industrial plants are usehil. Matching overall fluid flow characteristics within the reactor might determine the operative criteria. Ideally, the smaller reactor acts as a volume segment of the larger one. Elow distributions are not markedly influenced by... [Pg.516]


See other pages where Reactors reaction rate is mentioned: [Pg.155]    [Pg.155]    [Pg.29]    [Pg.50]    [Pg.263]    [Pg.270]    [Pg.1098]    [Pg.1099]    [Pg.1106]    [Pg.3055]    [Pg.275]    [Pg.15]    [Pg.342]    [Pg.499]    [Pg.250]    [Pg.454]    [Pg.509]    [Pg.518]    [Pg.519]    [Pg.519]    [Pg.523]    [Pg.524]    [Pg.481]   


SEARCH



Reactor rates

Reactors reaction

© 2024 chempedia.info