Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactivity description

It is obvions that any categorization tends to name the main trait of the phenomenon under consideration. This is useful. At the same time, the categorization need not be understood literally becanse each effect possesses multiple characteristics. However, it is impossible to study anything withont even a minimal classification. In fact, investigations on the ion-radical electronic structure appear to be more developed than studies on their reactivity. Therefore, not every example considered here is snpplied with the reactivity description. However, future accomplishments in studies on ion-radical reactions will be better understood in terms of the principles stated here. [Pg.143]

Contents Quantum Mechanics and Atomic Theory. - Simple Molecular Orbital Theory. -Structural Applications of Molecular Orbital Theory. - Electronic Spectra and Magnetic Properties of Inorganic Compounds. - Alternative Methods and Concepts. - Mechanism and Reactivity. - Descriptive Chemistry. - Physical and Spectroscopic Methods. - Appendices. -Subject Index. [Pg.125]

Since the introduction of the electronegativity as chemical potential with changed sign is considered to be a fundamental observable for the characterization of the equilibrium states of the electronic systems in interaction, the chemical reactivity description in terms of quantum statistics and algebraic theory is considered to be a fundamental step in elucidating the tendencies of evolution to and from the equilibrium states, admitted by an electronic system (finite) and also of the afferent critical states. [Pg.373]

In the complete set of LAs these basins are symmetric and located above and below the atom, perpendicular to the molecular plane. This reactivity description predicts equal probability of being attacked by a nucleophile from above or below. The same could be extrapolated for LBs H2O and H2S, but in these cases the reactivity should describe an electrophilic attack. In cases where this does not happen, as in NH3 and HONH2, there is a clear chemical interpretation it is expected that nucleophiles will primarily be attacked in the lone pair of the N. [Pg.234]

Overall, Eqs. (3.98) and (3.103) are the fundamental relations in terms of functional densities, which will be processed, and transformed aiming in modeling the chemical reactivity description with the aid of... [Pg.251]

How are fiindamental aspects of surface reactions studied The surface science approach uses a simplified system to model the more complicated real-world systems. At the heart of this simplified system is the use of well defined surfaces, typically in the fonn of oriented single crystals. A thorough description of these surfaces should include composition, electronic structure and geometric structure measurements, as well as an evaluation of reactivity towards different adsorbates. Furthemiore, the system should be constructed such that it can be made increasingly more complex to more closely mimic macroscopic systems. However, relating surface science results to the corresponding real-world problems often proves to be a stumbling block because of the sheer complexity of these real-world systems. [Pg.921]

The molecular beam and laser teclmiques described in this section, especially in combination with theoretical treatments using accurate PESs and a quantum mechanical description of the collisional event, have revealed considerable detail about the dynamics of chemical reactions. Several aspects of reactive scattering are currently drawing special attention. The measurement of vector correlations, for example as described in section B2.3.3.5. continue to be of particular interest, especially the interplay between the product angular distribution and rotational polarization. [Pg.2085]

Rutscher A and Wagner H - E 1993 Chemical quasi-equilibria a new concept in the description of reactive plasmas Plasma Sources Sc/. Technol 2 279-88... [Pg.2813]

In a two-lowest-electronic-state Bom-Huang description for a chemical reaction, the nuclei can move on both of two corresponding PESs during the reaction, due to the electronically non-adiabatic couplings between those states. A reactive scattering formalism for such a reaction involving a triatomic system... [Pg.205]

MMVB is a hybrid force field, which uses MM to treat the unreactive molecular framework, combined with a valence bond (VB) approach to treat the reactive part. The MM part uses the MM2 force field [58], which is well adapted for organic molecules. The VB part uses a parametrized Heisenberg spin Hamiltonian, which can be illustrated by considering a two orbital, two electron description of a sigma bond described by the VB determinants... [Pg.301]

The preferable theoretical tools for the description of dynamical processes in systems of a few atoms are certainly quantum mechanical calculations. There is a large arsenal of powerful, well established methods for quantum mechanical computations of processes such as photoexcitation, photodissociation, inelastic scattering and reactive collisions for systems having, in the present state-of-the-art, up to three or four atoms, typically. " Both time-dependent and time-independent numerically exact algorithms are available for many of the processes, so in cases where potential surfaces of good accuracy are available, excellent quantitative agreement with experiment is generally obtained. In addition to the full quantum-mechanical methods, sophisticated semiclassical approximations have been developed that for many cases are essentially of near-quantitative accuracy and certainly at a level sufficient for the interpretation of most experiments.These methods also are com-... [Pg.365]

Figure 2-59. Singly occupied j -systems are highly reactive intermediates that occur in MS experiments. They cannot be handled adequately by a) a connection table description, but are easily accommodated by b) RAMSES. Figure 2-59. Singly occupied j -systems are highly reactive intermediates that occur in MS experiments. They cannot be handled adequately by a) a connection table description, but are easily accommodated by b) RAMSES.
Quantitative eomparisons of aromatic reactivities were made by using the competitive method with solutions of nitronium tetrafluoroborate in sulpholan, and a concentration of aromatic compounds 10 times that of the salt. To achieve this condition considerable proportions of the aromatic compoimds were added to the medium, thus depriving the sulpholan of its role as true solvent thus, in the nitration of the alkyl- and halogeno-benzenes, the description of the experimental method shows that about 50-60 cm of mixed aromatic compounds were dissolved in a total of 130 cm of sulpholan. [Pg.62]

The electronic theory provides by these means a description of the influence of substituents upon the distribution of electrons in the ground state of an aromatic molecule as it changes the situation in benzene. It then assumes that an electrophile will react preferentially at positions which are relatively enriched with electrons, providing in this way an isolated molecule theory of reactivity. [Pg.127]

However, the electronic theory also lays stress upon substitution being a developing process, and by adding to its description of the polarization of aromatic molecules means for describing their polarisa-bility by an approaching reagent, it moves towards a transition state theory of reactivity. These means are the electromeric and inductomeric effects. [Pg.127]

A familiar feature of the electronic theory is the classification of substituents, in terms of the inductive and conjugative or resonance effects, which it provides. Examples from substituents discussed in this book are given in table 7.2. The effects upon orientation and reactivity indicated are only the dominant ones, and one of our tasks is to examine in closer detail how descriptions of substituent effects of this kind meet the facts of nitration. In general, such descriptions find wide acceptance, the more so since they are now known to correspond to parallel descriptions in terms of molecular orbital theory ( 7.2.2, 7.2.3). Only in respect of the interpretation to be placed upon the inductive effect is there still serious disagreement. It will be seen that recent results of nitration studies have produced evidence on this point ( 9.1.1). [Pg.128]

In providing an isolated molecule description of reactivity, qualitative resonance theory is roughly equivalent to that given above, but is less flexible in neglecting the inductive effect and polarisability. It is most commonly used now as a qualitative transition state theory, taking the... [Pg.128]

Ladder diagrams are a useful tool for evaluating chemical reactivity, usually providing a reasonable approximation of a chemical system s composition at equilibrium. When we need a more exact quantitative description of the equilibrium condition, a ladder diagram may not be sufficient. In this case we can find an algebraic solution. Perhaps you recall solving equilibrium problems in your earlier coursework in chemistry. In this section we will learn how to set up and solve equilibrium problems. We will start with a simple problem and work toward more complex ones. [Pg.156]

Another impetus to expansion of this field was the advent of World War 11 and the development of the atomic bomb. The desired isotope of uranium, in the form of UF was prepared by a gaseous diffusion separation process of the mixed isotopes (see Fluorine). UF is extremely reactive and required contact with inert organic materials as process seals and greases. The wartime Manhattan Project successfully developed a family of stable materials for UF service. These early materials later evolved into the current fluorochemical and fluoropolymer materials industry. A detailed description of the fluorine research performed on the Manhattan Project has been pubUshed (2). [Pg.266]

The General References and two other reviews (17,25) provide extensive descriptions of the chemistry of maleic anhydride and its derivatives. The broad industrial appHcations for this chemistry derive from the reactivity of the double bond in conjugation with the two carbonyl oxygens. [Pg.449]

Representation of Atmospheric Chemistry Through Chemical Mechanisms. A complete description of atmospheric chemistry within an air quaUty model would require tracking the kinetics of many hundreds of compounds through thousands of chemical reactions. Fortunately, in modeling the dynamics of reactive compounds such as peroxyacetyl nitrate [2278-22-0] (PAN), C2H2NO, O, and NO2, it is not necessary to foUow every compound. Instead, a compact representation of the atmospheric chemistry is used. Chemical mechanisms represent a compromise between an exhaustive description of the chemistry and computational tractabiUty. The level of chemical detail is balanced against computational time, which increases as the number of species and reactions increases. Instead of the hundreds of species present in the atmosphere, chemical mechanisms include on the order of 50 species and 100 reactions. [Pg.382]

These markings provide a general idea of the hazards of a material and the severity of these hazards as they relate to handling, fire protection, exposure, and control. This standard is not applicable to transportation or to use by the general public. It is also not applicable to chronic exposure. For a full description of this standard, refer to NFPA 704. The system identifies the hazards of a material in four principal categories health, flammability, reactivity, and unusual hazards such as reactivity with water. [Pg.2274]

Generai description. Galvanic corrosion refers to the preferential corrosion of the more reactive member of a two-metal pair when the metals are in electrical contact in the presence of a conductive fluid (see Chap. 16, Galvanic Corrosion ). The corrosion potential difference, the magnitude of which depends on the metal-pair combination and the nature of the fluid, drives a corrosion reaction that simultaneously causes the less-noble pair member to corrode and the more-noble pair member to become even more noble. The galvanic series for various metals in sea water is shown in Chap. 16, Table 16.1. Galvanic potentials may vary with temperature, time, flow velocity, and composition of the fluid. [Pg.328]

Although the Hiickel method has now been supplanted by more complete treatments for theoretical analysis of organic reactions, the pictures of the n orbitals of both linear and cyclic conjugated polyene systems that it provides are correct as to symmetry and the relative energy of the orbitals. In many reactions where the n system is the primary site of reactivity, these orbitals correctly describe the behavior of the systems. For that reason, the reader should develop a familiarity with the qualitative description of the n orbitals of typical linear polyenes and conjugated cyclic hydrocarbons. These orbitals will be the basis for further discussion in Chapters 9 and 11. [Pg.36]

The chemical reactivity of these two substituted ethylenes is in agreement with the ideas encompassed by both the MO and resonance descriptions. Enamines, as amino-substituted alkenes are called, are vety reactive toward electrophilic species, and it is the p carbon that is the site of attack. For example, enamines are protonated on the carbon. Acrolein is an electrophilic alkene, as predicted, and the nucleophile attacks the P carbon. [Pg.50]

The examples that have been presented in this section illustrate the approach that is used to describe structure and reactivity effects within the framework of MO description of structure. In the chapters that follow, both valence bond theory and MO theory will be used in the discussion of structure and reactivity. Qualitative valence bond terminology is normally most straightforward for saturated systems. MO theory provides useful insights into conjugated systems and into effects that depend upon the symmetry of the molecules under discussion. [Pg.57]

Several methods of quantitative description of molecular structure based on the concepts of valence bond theory have been developed. These methods employ orbitals similar to localized valence bond orbitals, but permitting modest delocalization. These orbitals allow many fewer structures to be considered and remove the need for incorporating many ionic structures, in agreement with chemical intuition. To date, these methods have not been as widely applied in organic chemistry as MO calculations. They have, however, been successfully applied to fundamental structural issues. For example, successful quantitative treatments of the structure and energy of benzene and its heterocyclic analogs have been developed. It remains to be seen whether computations based on DFT and modem valence bond theory will come to rival the widely used MO programs in analysis and interpretation of stmcture and reactivity. [Pg.65]

Although Lewis structures of this type are not entirely adequate descriptions of the structure of the excited states, they do correspond to the MO picture by indicating distortion of chaige and the presence of polar or radical-like centers. The excited states are much more reactive than the corresponding ground-state molecules. In addition to the increased energy content, this high reactivity is associated with the presence of half-filled orbitals. The two SOMO orbitals in the excited states have enhanced radical, cationic, or anionic character. [Pg.754]


See other pages where Reactivity description is mentioned: [Pg.567]    [Pg.209]    [Pg.567]    [Pg.209]    [Pg.852]    [Pg.2060]    [Pg.2065]    [Pg.67]    [Pg.100]    [Pg.111]    [Pg.131]    [Pg.7]    [Pg.34]    [Pg.265]    [Pg.161]    [Pg.470]    [Pg.75]    [Pg.320]    [Pg.261]    [Pg.2]    [Pg.9]    [Pg.46]    [Pg.57]    [Pg.558]   
See also in sourсe #XX -- [ Pg.60 ]




SEARCH



© 2024 chempedia.info