Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical interpreting the

This paper presents a continuation of work done by Cayley. Cayley has repeatedly investigated combinatorial problems regarding the determination of the number of certain treesK Some of his problems lend themselves to chemical interpretation the number of trees in question is equal to the number of certain (theoretically possible) chemical compounds. [Pg.1]

MoQSAR represents a new way of deriving QSARs. QSAR is treated as a multiobjective optimisation problem that comprises a number of competing objectives, such as model accuracy, complexity and chemical interpretability. The result is a family of QSAR models where each model represents a different compromise in the objectives. Typically, MoQSAR is able to find models that are at least as good as those found using standard statistical methods. The method will also find models where accuracy is traded with other objectives such as chemical interpretability. When presented with the full range of models the medicinal chemist is able to select one that represents the best compromise over all objectives. [Pg.150]

Note that owing to chemical interpretation the inequalities x > 0, y 0 must be satisfied while u, v can have an arbitrary sign. Linearization of (5.132)... [Pg.201]

Furthermore, molecular analysis is absolutely necessary for the petroleum industry in order to interpret the chemical processes being used and to evaluate the efficiency of treatments whether they be thermal or catalytic. This chapter will therefore present physical analytical methods used in the molecular characterization of petroleum. [Pg.39]

The effectiveness of the approach is demonstrated on two rqjresentative NDT techniques intapretation of data acquired with an ultrasonic rail inspection system and interpretation of eddy-current data from heat exchangers in (petro-)chemical industry. The results show that it is possible to provide a high level of automation in combination with efficient operator support for highly variable NDT measurements where up to now use of automated interpretation was only limited. [Pg.97]

The specific surface area of a solid is one of the first things that must be determined if any detailed physical chemical interpretation of its behavior as an adsorbent is to be possible. Such a determination can be made through adsorption studies themselves, and this aspect is taken up in the next chapter there are a number of other methods, however, that are summarized in the following material. Space does not permit a full discussion, and, in particular, the methods that really amount to a particle or pore size determination, such as optical and electron microscopy, x-ray or neutron diffraction, and permeability studies are largely omitted. [Pg.572]

Inelastic scattering processes are not used for structural studies in TEM and STEM. Instead, the signal from inelastic scattering is used to probe the electron-chemical environment by interpreting the specific excitation of core electrons or valence electrons. Therefore, inelastic excitation spectra are exploited for analytical EM. [Pg.1628]

The commercial 2D structure editor. Chemistry 4D-Draw, from Chemlnnovativc Software Inc., includes two additional special modules besides conventional chemical drawing tools. NamExpert provides the interpretation ofa compound name according to the lUPAC nomenclature to create the corresponding chemical structure. The latter can be represented in three different styles the shorthand. Kckulc. or semi-structural formula. In contrast to NamExpert, the Nomenclature module assigns lUPAC names to drawn structures. [Pg.140]

In contrast to IR and NMR spectroscopy, the principle of mass spectrometry (MS) is based on decomposition and reactions of organic molecules on theii way from the ion source to the detector. Consequently, structure-MS correlation is basically a matter of relating reactions to the signals in a mass spectrum. The chemical structure information contained in mass spectra is difficult to extract because of the complicated relationships between MS data and chemical structures. The aim of spectra evaluation can be either the identification of a compound or the interpretation of spectral data in order to elucidate the chemical structure [78-80],... [Pg.534]

The physical techniques used in IC analysis all employ some type of primary analytical beam to irradiate a substrate and interact with the substrate s physical or chemical properties, producing a secondary effect that is measured and interpreted. The three most commonly used analytical beams are electron, ion, and photon x-ray beams. Each combination of primary irradiation and secondary effect defines a specific analytical technique. The IC substrate properties that are most frequendy analyzed include size, elemental and compositional identification, topology, morphology, lateral and depth resolution of surface features or implantation profiles, and film thickness and conformance. A summary of commonly used analytical techniques for VLSI technology can be found in Table 3. [Pg.355]

QRA is fundamentally different from many other chemical engineering activities (e.g., chemistry, heat transfer, reaction kinetics) whose basic property data are theoretically deterministic. For example, the physical properties of a substance for a specific application can often be established experimentally. But some of the basic property data used to calculate risk estimates are probabilistic variables with no fixed values. Some of the key elements of risk, such as the statistically expected frequency of an accident and the statistically expected consequences of exposure to a toxic gas, must be determined using these probabilistic variables. QRA is an approach for estimating the risk of chemical operations using the probabilistic information. And it is a fundamentally different approach from those used in many other engineering activities because interpreting the results of a QRA requires an increased sensitivity to uncertainties that arise primarily from the probabilistic character of the data. [Pg.2]

One of the most common modes of characterization involves the determination of a material s surface chemistry. This is accomplished via interpretation of the fiag-mentation pattern in the static SIMS mass spectrum. This fingerprint yields a great deal of information about a sample s outer chemical nature, including the relative degree of unsaturation, the presence or absence of aromatic groups, and branching. In addition to the chemical information, the mass spectrum also provides data about any surface impurities or contaminants. [Pg.552]

The biological determinant is an indicator of exposure to the chemical, but the quantitative interpretation of the measurement is ambiguous. These determinants should be used as a screening test if a quantitative test is not practical or as a confirmatory test if the quantitative test is not specific and the origin of the determinant is in question. [Pg.89]

In this chapter, we will discuss the present status of CHIRBASE and describe the various ways in which two (2D) or three-dimensional (3D) chemical structure queries can be built and submitted to the searching system. In particular, the ability of this information system to locate and display neighboring compounds in which specified molecular fragments or partial structures are attached is one of the most important features because this is precisely the type of query that chemists are inclined to express and interpret the answers. Another aspect of the project has been concerned with the interdisciplinary use of CHIRBASE. We have attempted to produce a series of interactive tools that are designed to help the specialists or novices from different fields who have no particular expertise in chiral chromatography or in searching a chemical database. [Pg.96]

Once such effects had been noted, it became necessary to interpret the observed results and to classify the solvents. The earliest attempts at this were by Stobbe, who reviewed the effects of solvents on keto-enol tautomers [4]. Since then many attempts have been used to explain solvent effects, some based on observations of chemical reactions, others on physical properties of the solvents, and yet others on spectroscopic probes. All of these have their advantages and disadvantages and no one approach can be thought of as exclusively right . This review is organized by type of measurement, and the available information is then summarized at the end. [Pg.94]

This representation is ordinarily used for solid and for liquid systems and rarely for gases. In the absence of chemical reactions the mass composition of an isolated system remains unchanged. Any consistent set of units for mass (or volume) may be selected in interpreting the compositions expressed on a mass (or volumetric) basis. [Pg.327]

Aqueous environments will range from very thin condensed films of moisture to bulk solutions, and will include natural environments such as the atmosphere, natural waters, soils, body fluids, etc. as well as chemicals and food products. However, since environments are dealt with fully in Chapter 2, this discussion will be confined to simple chemical solutions, whose behaviour can be more readily interpreted in terms of fundamental physicochemical principles, and additional factors will have to be considered in interpreting the behaviour of metals in more complex environments. For example, iron will corrode rapidly in oxygenated water, but only very slowly when oxygen is absent however, in an anaerobic water containing sulphate-reducing bacteria, rapid corrosion occurs, and the mechanism of the process clearly involves the specific action of the bacteria see Section 2.6). [Pg.55]

It is easy to establish the correspondence of the chemical interpretation of the numbers and given in the Introduction,... [Pg.59]

It was largely this chemical interpretation which led Cayley to enumerate various kinds of trees. He gave (without much of a proof) the formula for the number of trees on n labelled vertices [CayA89], and the equation... [Pg.105]

To summarize, we find that the weight and volume relations that are observed in chemical changes provide an experimental foundation for the atomic theory. All of contemporary chemical thought is based upon the atomic model and, hence, every successful chemical interpretation strengthens our belief in the usefulness of this theory. [Pg.236]


See other pages where Chemical interpreting the is mentioned: [Pg.67]    [Pg.110]    [Pg.34]    [Pg.9]    [Pg.120]    [Pg.67]    [Pg.110]    [Pg.34]    [Pg.9]    [Pg.120]    [Pg.840]    [Pg.477]    [Pg.727]    [Pg.273]    [Pg.246]    [Pg.547]    [Pg.556]    [Pg.558]    [Pg.130]    [Pg.204]    [Pg.54]    [Pg.418]    [Pg.2425]    [Pg.3]    [Pg.4]    [Pg.716]    [Pg.547]    [Pg.558]    [Pg.209]    [Pg.1]    [Pg.22]    [Pg.1206]    [Pg.519]    [Pg.529]    [Pg.237]   
See also in sourсe #XX -- [ Pg.106 ]




SEARCH



Chemical Interpretation of the Model

Postmodernist and Sociological Interpretations of the Chemical Revolution

Postpositivist Interpretations of the Chemical Revolution

The Mutagenicity of Chemical Carcinogens Correlations, Problems, and Interpretations

The Physico-Chemical Interpretation

© 2024 chempedia.info