Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Orbitals half-filled

Next, we half-fill the lone unhybridized 3p orbital on sulfur and the lone 2p orbital on the oxygen atom with a formal charge of zero (atom B). Following this, the 2p orbital of the other two oxygen atoms (atoms C and D), are filled and then lone pairs are placed in the sp2 hybrid orbitals that are still empty. At this stage, then, all 24 valence electrons have been put into atomic and hybrid orbitals on the four atoms. Now we overlap the six half-filled sp2 hybrid orbitals to generate the cr-bond framework and combine the three 2p orbitals (2 filled, one half-filled) and the 3p orbital (half-filled) to form the four 7t-molecular orbitals, as shown below ... [Pg.239]

The sublevels of a particular orbital half fill before electrons pair up in the sub-level. [Pg.112]

Hund s rule Hund s rule states that electrons are added to the orbitals, half filling them all before any pairing occurs. [Pg.361]

Extrastability of Half-filled and Completely Filled Orbitals Half-filled or completely filled orbitals have extrastability because they are more symmetrical and have lower energy because of least repulsion than the incompletely filled orbitals. [Pg.261]

Closely related to the Pauli exclusion principle is the third rule, Hund s rule, which states that when electrons occupy orbitals of equal energy (e.g., the five 3d orbitals), one electron enters each orbital until all the orbitals contain one electron. In this configuration, all electrons will have parallel spin (same direction). Second electrons then add to each orbital so that their spins are opposite to the first electrons in the orbital. Atoms with all outer orbitals half-filled are very stable. [Pg.71]

The explanation for this configuration of chromium is beyond the scope of this book. In fact, chemists are still disagreeing over the exact cause of this anomaly. Note, however, that the observed configuration has both the 4s and 3d orbitals half-filled. This is a good way to remember the correct configuration. [Pg.553]

The teodeocy to aitaia either a half filled or fully filled set of d orbitals at the expense of the outer s orbital is shown by both chromium and copper and should be noted. This apparent irregularity will be discussed in more detail in Chapter 13. [Pg.9]

Table 2.6 shows the electron affinities, for the addition of one electron to elements in Periods 2 and 3. Energy is evolved by many atoms when they accept electrons. In the cases in which energy is absorbed it will be noted that the new electron enters either a previously unoccupied orbital or a half-filled orbital thus in beryllium or magnesium the new electron enters the p orbital, and in nitrogen electron-pairing in the p orbitals is necessary. [Pg.34]

One important question is how many orbitals are available at any given energy level. This is shown using a density of states (DOS) diagram as in Figure 34.2. It is typical to include the Fermi level as denoted by the dotted line in this figure. A material with a half-filled energy band is a conductor, but it may be a... [Pg.269]

The Fermi energy is the energy of the highest-energy filled orbital, analogous to a HOMO energy. If the orbital is half-filled, its energy will be found at a collection of points in /c-space, called the Fermi surface. [Pg.270]

Valence bond and molecular orbital theory both incorporate the wave description of an atom s electrons into this picture of H2 but m somewhat different ways Both assume that electron waves behave like more familiar waves such as sound and light waves One important property of waves is called interference m physics Constructive interference occurs when two waves combine so as to reinforce each other (m phase) destructive interference occurs when they oppose each other (out of phase) (Figure 2 2) Recall from Section 1 1 that electron waves m atoms are characterized by their wave function which is the same as an orbital For an electron m the most stable state of a hydrogen atom for example this state is defined by the Is wave function and is often called the Is orbital The valence bond model bases the connection between two atoms on the overlap between half filled orbifals of fhe fwo afoms The molecular orbital model assembles a sef of molecular orbifals by combining fhe afomic orbifals of all of fhe atoms m fhe molecule... [Pg.59]

The characteristic feature of valence bond theory is that it pictures a covalent bond between two atoms in terms of an m phase overlap of a half filled orbital of one atom with a half filled orbital of the other illustrated for the case of H2 m Figure 2 3 Two hydrogen atoms each containing an electron m a Is orbital combine so that their orbitals overlap to give a new orbital associated with both of them In phase orbital overlap (con structive interference) increases the probability of finding an electron m the region between the two nuclei where it feels the attractive force of both of them... [Pg.60]

A vexing puzzle m the early days of valence bond theory concerned the fact that methane is CH4 and that the four bonds to carbon are directed toward the corners of a tetrahedron Valence bond theory is based on the overlap of half filled orbitals of the connected atoms but with an electron configuration of s 2s 2p 2py carbon has only two half filled orbitals (Figure 2 8a) How can it have bonds to four hydrogens ... [Pg.64]

All four sp orbitals are of equal energy Therefore according to Hund s rule (Sec tion 1 1) the four valence electrons of carbon are distributed equally among them making four half filled orbitals available for bonding... [Pg.64]

The axes of the sp orbitals point toward the corners of a tetrahedron Therefore sp hybridization of carbon is consistent with the tetrahedral structure of methane Each C—H bond is a ct bond m which a half filled Is orbital of hydrogen over laps with a half filled sp orbital of carbon along a line drawn between them... [Pg.64]

FIGURE 2 9 Each half filled sp orbital overlaps with a half filled hydrogen Is or bital along a line between them giving a tetrahedral arrangement of four ct bonds Only the major lobe of each sp orbital is shown Each orbital contains a smaller back lobe which has been omitted for clarity... [Pg.65]

FIGURE 2 10 The C—C ct bond in ethane pictured as an overlap of a half filled sp orbital of one carbon with a half filled sp hybrid orbital of the other... [Pg.67]

Each carbon atom still has at this point an unhybridized 2p orbital available for bonding These two half filled 2p orbitals have their axes perpendicular to the frame work of CT bonds of the molecule and overlap m a side by side manner to give what is... [Pg.90]

In valence bond theory a covalent bond is described m terms of m phase overlap of a half filled orbital of one atom with a half filled orbital of another When applied to bonding m H2 the orbitals involved are the Is orbitals of two hydrogen atoms and the bond is a ct bond... [Pg.95]

Section 2 6 Bonding m methane is most often described by an orbital hybridization model which is a modified form of valence bond theory Four equiva lent sp hybrid orbitals of carbon are generated by mixing the 2s 2p 2py and 2p orbitals Overlap of each half filled sp hybrid orbital with a half filled hydrogen Is orbital gives a ct bond... [Pg.95]

Section 2 21 Carbon is sp hybridized m acetylene and the triple bond is of the ct + Tt + Tt type The 2s orbital and one of the 2p orbitals combine to give two equivalent sp orbitals that have their axes m a straight line A ct bond between the two carbons is supplemented by two tr bonds formed by overlap of the remaining half filled p orbitals... [Pg.99]

In addition to its three sp hybrid orbitals each carbon has a half filled 2p orbital that can participate m tt bonding Figure >b shows the continuous rr system that encompasses all of the carbons that result from overlap of these 2p orbitals The six tt electrons of benzene are delocalized over all six carbons... [Pg.430]

Each carbon in propane is bonded to four atoms and is sp hybridized The C—C bonds are a bonds involving overlap of a half filled sp hybrid orbital of one carbon with a half filled sp hybrid orbital of the other The C—H bonds are a bonds involving overlap of a half filled sp hybrid onbital of carbon with a half filled hydrogen li orbital... [Pg.1202]

Hund s rule (Section 1 1) When two orbitals are of equal en ergy they are populated by electrons so that each is half filled before either one is doubly occupied Hybrid orbital (Section 2 6) An atomic orbital represented as a mixture of vanous contributions of that atom ss p d etc orbitals... [Pg.1286]

Valence bond theory (Section 2 3) Theory of chemical bond mg based on overlap of half filled atomic orbitals between two atoms Orbital hybridization is an important element of valence bond theory... [Pg.1296]

A common example of the Peieds distortion is the linear polyene, polyacetylene. A simple molecular orbital approach would predict S hybddization at each carbon and metallic behavior as a result of a half-filled delocalized TT-orbital along the chain. Uniform bond lengths would be expected (as in benzene) as a result of the delocalization. However, a Peieds distortion leads to alternating single and double bonds (Fig. 3) and the opening up of a band gap. As a result, undoped polyacetylene is a semiconductor. [Pg.237]

The initial bond formation between the -> ir excited carbonyl compound and an alkene can occur by interaction of the half-filled n -orbital of the [I CO] with the ir-system of the alkene, in a sense transferring a tt-electron to the -orbital and making a bond between an alkene carbon and the carbonyl oxygen. In this process (common for electron rich olefins) the plane formed by the alkene carbons and their four substituents is perpendicular to the plane of the carbonyl groups and its two substituents (Figure 1). In the... [Pg.39]


See other pages where Orbitals half-filled is mentioned: [Pg.323]    [Pg.412]    [Pg.3]    [Pg.24]    [Pg.11]    [Pg.36]    [Pg.323]    [Pg.412]    [Pg.3]    [Pg.24]    [Pg.11]    [Pg.36]    [Pg.152]    [Pg.879]    [Pg.879]    [Pg.361]    [Pg.389]    [Pg.60]    [Pg.67]    [Pg.168]    [Pg.168]    [Pg.707]    [Pg.201]    [Pg.297]    [Pg.676]   
See also in sourсe #XX -- [ Pg.198 , Pg.199 , Pg.200 , Pg.203 ]




SEARCH



Orbitals filled

Orbitals filling

Orbitals orbital filling

© 2024 chempedia.info