Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecule ground state

An atom or a molecule with the total spin of the electrons S = 1 is said to be in a triplet state. The multiplicity of such a state is (2.S +1)=3. Triplet systems occur in both excited and ground state molecules, in some compounds containing transition metal ions, in radical pair systems, and in some defects in solids. [Pg.1554]

Most infrared spectroscopy of complexes is carried out in tire mid-infrared, which is tire region in which tire monomers usually absorb infrared radiation. Van der Waals complexes can absorb mid-infrared radiation eitlier witli or without simultaneous excitation of intennolecular bending and stretching vibrations. The mid-infrared bands tliat contain tire most infonnation about intennolecular forces are combination bands, in which tire intennolecular vibrations are excited. Such spectra map out tire vibrational and rotational energy levels associated witli monomers in excited vibrational states and, tluis, provide infonnation on interaction potentials involving excited monomers, which may be slightly different from Arose for ground-state molecules. [Pg.2444]

The energy of atomization of a ground state molecule at 0 K, for example, methane, is the energy of the reaction... [Pg.315]

The Boltzmann equation (Equation 18.2) shows that, under equilibrium conditions, the ratio of the number (n) of ground-state molecules (A ) to those in an excited state (A ) depends on the energy gap E between the states, the Boltzmann constant k (1.38 x 10" J-K" ), and the absolute temperature T(K). [Pg.124]

If the temperature were raised, more molecules would attain the excited state, but even at 50,000°C there would be only one excited-state atom for every two ground-state atoms, and stimulated emission would not produce a large cascade effect. To reach the excess of stimulated emissions needed to build a large cascade (lasing), the population of excited-state molecules must exceed that of the ground state, preferably at normal ambient temperatures. This situation of an excess of excited-state over ground-state molecules is called a population inversion in order to contrast it with normal ground-state conditions. [Pg.124]

Molecular Interaction. The examples of gas lasers described above involve the formation of chemical compounds in their excited states, produced by reaction between positive and negative ions. However, molecules can also interact in a formally nonbonding sense to give complexes of very short lifetimes, as when atoms or molecules collide with each other. If these sticky collisions take place with one of the molecules in an electronically excited state and the other in its ground state, then an excited-state complex (an exciplex) is formed, in which energy can be transferred from the excited-state molecule to the ground-state molecule. The process is illustrated in Figure 18.12. [Pg.130]

So far, no ground-state molecule in which the twisted conjugation would exist has been made, so the prediction remains to be tested. It correctness is strongly suggested, however, by the fact that transition states with twisted orbital arrays appear to be perfectly acceptable... [Pg.524]

There is another usefiil viewpoint of concerted reactions that is based on the idea that transition states can be classified as aromatic or antiaromatic, just as is the case for ground-state molecules. A stabilized aromatic transition state will lead to a low activation energy, i.e., an allowed reaction. An antiaromatic transition state will result in a high energy barrier and correspond to a forbidden process. The analysis of concerted reactions by this process consists of examining the array of orbitals that would be present in the transition state and classifying the system as aromatic or antiaromatic. [Pg.611]

The complementary relationship between thermal and photochemical reactions can be illustrated by considering some of the same reaction types discussed in Chapter 11 and applying orbital symmetry considerations to the photochemical mode of reaction. The case of [2ti + 2ti] cycloaddition of two alkenes can serve as an example. This reaction was classified as a forbidden thermal reaction (Section 11.3) The correlation diagram for cycloaddition of two ethylene molecules (Fig. 13.2) shows that the ground-state molecules would lead to an excited state of cyclobutane and that the cycloaddition would therefore involve a prohibitive thermal activation energy. [Pg.747]

Although Lewis structures of this type are not entirely adequate descriptions of the structure of the excited states, they do correspond to the MO picture by indicating distortion of chaige and the presence of polar or radical-like centers. The excited states are much more reactive than the corresponding ground-state molecules. In addition to the increased energy content, this high reactivity is associated with the presence of half-filled orbitals. The two SOMO orbitals in the excited states have enhanced radical, cationic, or anionic character. [Pg.754]

It lias also been suggested that photoexcited benzoyl peroxide is somewhat more susceptible to induced decomposition processes involving electron transfer than the ground state molecule. Rosenthal et c//.15 reported on redox reactions with certain salts (including benzoate ion) and neutral molecules (e.g. alcohols). [Pg.84]

It is possible that some of these photochemical cycloadditions take place by a lA + A] mechanism, which is of course allowed by orbital symmetry when and if they do, one of the molecules must be in the excited singlet state (5i) and the other in the ground state.The nonphotosensitized dimerizations of cis- and trans-2-butene are stereospecific,making it likely that the [n2s + n2s] mechanism is operating in these reactions. However, in most cases it is a triplet excited state that reacts with the ground-state molecule in these cases the diradical (or in certain... [Pg.1082]

Excited state electron transfer also needs electronic interaction between the two partners and obeys the same rules as electron transfer between ground state molecules (Marcus equation and related quantum mechanical elaborations [ 14]), taking into account that the excited state energy can be used, to a first approximation, as an extra free energy contribution for the occurrence of both oxidation and reduction processes [8]. [Pg.163]

Most of the ground-state molecules contain all the electrons paired. (The... [Pg.404]

Fig. 7.12. The behavior of SO MO in interaction with a ground-state molecule ) etc., denote the quantities mentioned... Fig. 7.12. The behavior of SO MO in interaction with a ground-state molecule ) etc., denote the quantities mentioned...
The subject of delayed fluorescence was discussed in Section 5.2a. It was seen that there are two common types of delayed fluorescence, that arising from thermally activated return from the triplet state to the lowest excited singlet (E-type delayed fluorescence) and that arising from collision of two excited triplet molecules resulting in a singlet excited molecule and a ground state molecule (P-type delayed fluorescence). The P-type delayed fluorescence can be used as a convenient tool for the determination of intersystem crossing efficiencies[Pg.125]

In the flash photolysis technique a large population of ground state molecules are raised to an excited singlet state by the initial photolysis flash. In a time r (singlet lifetime) after the photolysis flash a certain proportion of... [Pg.127]

With two y,8 double bonds, two a,/3 double bonds, and the possibilities of cis and trans ring fusions with syn and anti configurations, 20 isomeric dimers are possible. Surprisingly, only one product is formed in a head-to-tail fashion. The sole product of the irradiation of the 3,5-diene-7-ketosteroid (76), however, is the head-to-head dimer. The specificity and mode of addition arise presumably through the effect of the specific environment of the chromaphore. The dimerization of (75) is believed to involve the addition of the a,fi double bond of a photoexcited molecule to the less hindered y,8 double bond of a ground state molecule. The photocondensation of (76) with cyclopentene, in which steric hindrance should not be a controlling factor, was found to yield a cyclobutane product involving the a,/ bond of the steroid in contrast to dimerization across the y,8 bond. [Pg.537]


See other pages where Molecule ground state is mentioned: [Pg.1985]    [Pg.2451]    [Pg.138]    [Pg.93]    [Pg.124]    [Pg.124]    [Pg.129]    [Pg.357]    [Pg.270]    [Pg.212]    [Pg.610]    [Pg.612]    [Pg.216]    [Pg.163]    [Pg.48]    [Pg.67]    [Pg.885]    [Pg.108]    [Pg.102]    [Pg.133]    [Pg.262]    [Pg.885]    [Pg.56]    [Pg.405]    [Pg.332]    [Pg.396]    [Pg.40]    [Pg.121]    [Pg.224]    [Pg.412]    [Pg.416]    [Pg.14]    [Pg.473]   
See also in sourсe #XX -- [ Pg.29 ]




SEARCH



Diatomic molecules ground state electronic configurations

Energy partition ground state molecules

Ground state diatomic molecules

Ground state, of atoms and molecules

Ground-State Triplet Molecules

Ground-state calculations hydrogen molecules

Ground-state configuration, water molecule

Ground-state wave function hydrogen molecule

Ground-state wave function nonlinear molecules

Homonuclear diatomic molecules ground state electronic configurations

Molecule selection, equivalences ground-state

Molecules ground state configurations

Spectroscopic Techniques for Measuring Collision-Induced Transitions in the Electronic Ground State of Molecules

The Stereochemical Consequences of Coulomb Polarization in Ground State Molecules

© 2024 chempedia.info