Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction rate component

Universal gas constant A-component reaction rate Hydrogen reaction rate /-Component reaction rate Selective membrane radius Hydrogen solubility Reactor operating temperature Permeation zone temperature Temperature of heating/cooling fluid Reaction zone temperature Temperature on catalyst surface Temperature inside catalyst particle Reactor tube wall temperature... [Pg.80]

The rate law draws attention to the role of component concentrations. AH other influences are lumped into coefficients called reaction rate constants. The are not supposed to change as concentrations change during the course of the reaction. Although are referred to as rate constants, they change with temperature, solvent, and other reaction conditions, even if the form of the rate law remains the same. [Pg.508]

The action of redox metal promoters with MEKP appears to be highly specific. Cobalt salts appear to be a unique component of commercial redox systems, although vanadium appears to provide similar activity with MEKP. Cobalt activity can be supplemented by potassium and 2inc naphthenates in systems requiring low cured resin color lithium and lead naphthenates also act in a similar role. Quaternary ammonium salts (14) and tertiary amines accelerate the reaction rate of redox catalyst systems. The tertiary amines form beneficial complexes with the cobalt promoters, faciUtating the transition to the lower oxidation state. Copper naphthenate exerts a unique influence over cure rate in redox systems and is used widely to delay cure and reduce exotherm development during the cross-linking reaction. [Pg.319]

The azo coupling reaction proceeds by the electrophilic aromatic substitution mechanism. In the case of 4-chlorobenzenediazonium compound with l-naphthol-4-sulfonic acid [84-87-7] the reaction is not base-catalyzed, but that with l-naphthol-3-sulfonic acid and 2-naphthol-8-sulfonic acid [92-40-0] is moderately and strongly base-catalyzed, respectively. The different rates of reaction agree with kinetic studies of hydrogen isotope effects in coupling components. The magnitude of the isotope effect increases with increased steric hindrance at the coupler reaction site. The addition of bases, even if pH is not changed, can affect the reaction rate. In polar aprotic media, reaction rate is different with alkyl-ammonium ions. Cationic, anionic, and nonionic surfactants can also influence the reaction rate (27). [Pg.428]

Optically Active Acids and Esters. Enantioselective hydrolysis of esters of simple alcohols is a common method for the production of pure enantiomers of esters or the corresponding acids. Several representative examples are summarized ia Table 4. Lipases, esterases, and proteases accept a wide variety of esters and convert them to the corresponding acids, often ia a highly enantioselective manner. For example, the hydrolysis of (R)-methyl hydratropate [34083-55-1] (40) catalyzed by Hpase P from Amano results ia the corresponding acid ia 50% yield and 95% ee (56). Various substituents on the a-carbon (41—44) are readily tolerated by both Upases and proteases without reduction ia selectivity (57—60). The enantioselectivity of many Upases is not significantly affected by changes ia the alcohol component. As a result, activated esters may be used as a means of enhancing the reaction rate. [Pg.337]

Although equihbrium-controUed peptide synthesis has been successfully used on a number of occasions, including thermolysin-catalyzed synthesis of aspartame (126) and semisynthesis of insulin (127), the method has a significant drawback a water-miscible organic cosolvent added to the reaction medium to suppress the ionization of unactivated carboxy components significantly reduces the reaction rate. [Pg.345]

For theJth. component, my = m iDy is the component mass flow rate in stream i is the mass fraction of component j in stream i and q is the net reaction rate (mass generation minus consumption) per unit volume V that contains mass M. If it is inconvenient to measure mass flow rates, the product of density and volumetric flow rate is used instead. [Pg.592]

On Figure 6.3.1 the first line tells the date and duration of the experiment. In the third line the number of cycles is five. This indicates that feed and product streams were analyzed five times before an evaluation was made. The concentrations, and all other numbers are the average of the five repeated analyses with the standard deviation given for each average value. The RATE as 1/M means for each component the reaction rate in lb-moles per 1000 lbs of catalyst. [Pg.126]

The temperature dependence of reaction rates permits evaluation of the enthalpy and entropy components of the free energy of activation. The terms in Eq. (4.4) corresponding to can be expressed as... [Pg.202]

The role that acid and base catalysts play can be quantitatively studied by kinetic techniques. It is possible to recognize several distinct types of catalysis by acids and bases. The term specie acid catalysis is used when the reaction rate is dependent on the equilibrium for protonation of the reactant. This type of catalysis is independent of the concentration and specific structure of the various proton donors present in solution. Specific acid catalysis is governed by the hydrogen-ion concentration (pH) of the solution. For example, for a series of reactions in an aqueous buffer system, flie rate of flie reaction would be a fimetion of the pH, but not of the concentration or identity of the acidic and basic components of the buffer. The kinetic expression for any such reaction will include a term for hydrogen-ion concentration, [H+]. The term general acid catalysis is used when the nature and concentration of proton donors present in solution affect the reaction rate. The kinetic expression for such a reaction will include a term for each of the potential proton donors that acts as a catalyst. The terms specific base catalysis and general base catalysis apply in the same way to base-catalyzed reactions. [Pg.229]

If the rate law depends on the concentration of more than one component, and it is not possible to use the method of one component being in excess, a linearized least squares method can be used. The purpose of regression analysis is to determine a functional relationship between the dependent variable (e.g., the reaction rate) and the various independent variables (e.g., the concentrations). [Pg.171]

Modeling of Chemioal Kinetios and Reaotor Design For component A, the reaction rate is expressed by... [Pg.298]

Enzymology of proteases in a water-phase is well known, but its alteration in a compartment is poorly understood. There are dramatical changes in reaction rates, in enzyme contractions and in enzyme sensitivity to inhibitors, which are not exactly described. In addition, besides fibrin and platelets there are several cellular and molecular components present in a thrombus compartment, where their influence on the basic fibrinolytic reactions is not known. To study this aspect of fibrinolysis is a task of the near future [4]. [Pg.505]

NOTE Probably the most important junction of oxygen scavengers is, in reality, the ability to passivate boiler steel. In recognition of this, today most novel oxygen scavenger trials try to identify, not merely comparative oxygen reaction rates, but more importantly, the reduction in iron and copper transport rates through the boiler system. In other words, they seek to optimize the passivation of boiler surfaces and other system components. [Pg.482]


See other pages where Reaction rate component is mentioned: [Pg.341]    [Pg.341]    [Pg.944]    [Pg.1868]    [Pg.2593]    [Pg.110]    [Pg.639]    [Pg.22]    [Pg.509]    [Pg.217]    [Pg.234]    [Pg.459]    [Pg.92]    [Pg.153]    [Pg.349]    [Pg.426]    [Pg.148]    [Pg.459]    [Pg.505]    [Pg.347]    [Pg.879]    [Pg.298]    [Pg.298]    [Pg.424]    [Pg.1117]    [Pg.124]    [Pg.23]    [Pg.454]    [Pg.909]    [Pg.126]    [Pg.484]    [Pg.168]    [Pg.8]    [Pg.26]    [Pg.28]    [Pg.255]    [Pg.933]    [Pg.46]   
See also in sourсe #XX -- [ Pg.390 ]




SEARCH



7-component reactions

Components ratings

© 2024 chempedia.info