Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction radical initiated

Section 10.8.3 in Chapter 10 showed several reactions of the C=C unit of alkenes that give polymers. Dienes undergo polymerization reactions, but the presence of the second double bond leads to some interesting reactions. Radical initiated polymerization reactions of alkenes were discussed in Chapter 10 (Section 10.8.3) this section will focus on the radical-initiated polymerization of conjugated dienes. [Pg.1220]

Polymerization reactions. There are two broad types of polymerization reactions, those which involve a termination step and those which do not. An example that involves a termination step is free-radical polymerization of an alkene molecule. The polymerization requires a free radical from an initiator compound such as a peroxide. The initiator breaks down to form a free radical (e.g., CH3 or OH), which attaches to a molecule of alkene and in so doing generates another free radical. Consider the polymerization of vinyl chloride from a free-radical initiator R. An initiation step first occurs ... [Pg.21]

Among the hydrogen halides only hydrogen bromide reacts with alkenes by both electrophilic and free radical addition mechanisms Hydrogen iodide and hydrogen chlo ride always add to alkenes by electrophilic addition and follow Markovmkov s rule Hydrogen bromide normally reacts by electrophilic addition but if peroxides are pres ent or if the reaction is initiated photochemically the free radical mechanism is followed... [Pg.245]

All of the reactions listed in Table 6.1 produce free radicals, so we are presented with a number of alternatives for initiating a polymerization reaction. Our next concern is in the fate of these radicals or, stated in terms of our interest in polymers, the efficiency with which these radicals initiate polymerization. Since these free radicals are relatively reactive species, there are a variety of... [Pg.350]

Any one of these expressions gives the rate of initiation Rj for the particular catalytic system employed. We shall focus attention on the homolytic decomposition of a single initiator as the mode of initiation throughout most of this chapter, since this reaction typifies the most widely used free-radical initiators. Appropriate expressions for initiation which follows Eq. (6.6) are readily derived. [Pg.356]

Uses, cx-Aminonitriles may be hydrolyzed to aminoacids, such as is done in producing ethylenediaminetetracetate (EDTA) or nittilotriacetate (NTA). In these cases, formaldehyde is utilized in place of a ketone in the synthesis. The principal use of the ketone-based aminonitriles described above is in the production of azobisnittile radical initiators (see below). AN-64 is also used as an intermediate in the synthesis of the herbicide Bladex. Aminonitriles are also excellent intermediates for the synthesis of substituted hydantoins by reaction with carbon dioxide however, this is not currently commercially practiced. [Pg.222]

Other fairly recent commercial products, poly(vinyl amine) and poly(vinyl amine vinyl alcohol), have addressed the need for primary amines and their selective reactivity. Prior efforts to synthesize poly(vinyl amine) have been limited because of the difficulty hydrolyzing the intermediate polymers. The current product is prepared from /V-ethenylformamide (20) formed from the reaction of acetaldehyde and formamide. The vinyl amide is polymerized with a free-radical initiator, then hydrolyzed (eq. 7). [Pg.320]

Unsaturated Group Reactions. In addition to a comprehensive review of these reactions (16), there are excellent texts (17,18). Free-radical-initiated polymerization of the double bond is the most common reaction and presents one of the more troublesome aspects of monomer manufacture and purification. [Pg.151]

Oligomeric Vinylphosphonate. A water-soluble oligomer, Fyrol 76 [41222-33-7] is produced by reaction of bis(2-chloroethyl) vinylphosphonate and dimethyl methylphosphonate with elimination of all the chlorine as methyl chloride (127,128). This Hquid, containing 22.5% P, is curable by free-radical initiation, on cotton or other fabrics. Nitrogen components, such as A/-methylolacrylamide or methylolmelamines, are usually included in the finish, which can be durable to multiple launderings (129,130). [Pg.480]

Suspension polymerization of VDE in water are batch processes in autoclaves designed to limit scale formation (91). Most systems operate from 30 to 100°C and are initiated with monomer-soluble organic free-radical initiators such as diisopropyl peroxydicarbonate (92—96), tert-huty peroxypivalate (97), or / fZ-amyl peroxypivalate (98). Usually water-soluble polymers, eg, cellulose derivatives or poly(vinyl alcohol), are used as suspending agents to reduce coalescence of polymer particles. Organic solvents that may act as a reaction accelerator or chain-transfer agent are often employed. The reactor product is a slurry of suspended polymer particles, usually spheres of 30—100 pm in diameter they are separated from the water phase thoroughly washed and dried. Size and internal stmcture of beads, ie, porosity, and dispersant residues affect how the resin performs in appHcations. [Pg.386]

Oxidation begins with the breakdown of hydroperoxides and the formation of free radicals. These reactive peroxy radicals initiate a chain reaction that propagates the breakdown of hydroperoxides into aldehydes (qv), ketones (qv), alcohols, and hydrocarbons (qv). These breakdown products make an oxidized product organoleptically unacceptable. Antioxidants work by donating a hydrogen atom to the reactive peroxide radical, ending the chain reaction (17). [Pg.436]

Other nonpolymeric radical-initiated processes include oxidation, autoxidation of hydrocarbons, chlorination, bromination, and other additions to double bonds. The same types of initiators are generally used for initiating polymerization and nonpolymerization reactions. Radical reactions are extensively discussed in the chemical Hterature (3—15). [Pg.220]

LDPE, also known as high pressure polyethylene, is produced at pressures ranging from 82—276 MPa (800—2725 atm). Operating at 132—332°C, it may be produced by either a tubular or a stirred autoclave reactor. Reaction is sustained by continuously injecting free-radical initiators, such as peroxides, oxygen, or a combination of both, to the reactor feed. [Pg.371]

An expanding development is the use of peroxodisulfates as oxidants in organic chemistry (80,81). These reactions are initiated by heat, light, gamma rays, or transition-metal ions. The primary oxidising species is usually the sulfate ion radical, P hskip -3pt peroxodisulfate anion... [Pg.96]

The reactions of alkyl hydroperoxides with ferrous ion (eq. 11) generate alkoxy radicals. These free-radical initiator systems are used industrially for the emulsion polymerization and copolymerization of vinyl monomers, eg, butadiene—styrene. The use of hydroperoxides in the presence of transition-metal ions to synthesize a large variety of products has been reviewed (48,51). [Pg.104]

The free radicals initially formed are neutralized by the quinone stabilizers, temporarily delaying the cross-linking reaction between the styrene and the fumarate sites in the polyester polymer. This temporary induction period between catalysis and the change to a semisoHd gelatinous mass is referred to as gelation time and can be controUed precisely between 1—60 min by varying stabilizer and catalyst levels. [Pg.317]

As the quinone stabilizer is consumed, the peroxy radicals initiate the addition chain propagation reactions through the formation of styryl radicals. In dilute solutions, the reaction between styrene and fumarate ester foUows an alternating sequence. However, in concentrated resin solutions, the alternating addition reaction is impeded at the onset of the physical gel. The Hquid resin forms an intractable gel when only 2% of the fumarate unsaturation is cross-linked with styrene. The gel is initiated through small micelles (12) that form the nuclei for the expansion of the cross-linked network. [Pg.317]

Halogen Displacement. Poly(phenylene oxide)s can also be prepared from 4-halo-2,6-disubstituted phenols by displacement of the halogen to form the ether linkage (48). A trace of an oxidizing agent or free radical initiates the displacement reaction. With 4-bromo-2,6-dimethylphenol, the reaction can be represented as in equation 10 ... [Pg.329]

Trilialophenols can be converted to poly(dihaloph.enylene oxide)s by a reaction that resembles radical-initiated displacement polymerization. In one procedure, either a copper or silver complex of the phenol is heated to produce a branched product (50). In another procedure, a catalytic quantity of an oxidizing agent and the dry sodium salt in dimethyl sulfoxide produces linear poly(2,6-dichloro-l,4-polyphenylene oxide) (51). The polymer can also be prepared by direct oxidation with a copper—amine catalyst, although branching in the ortho positions is indicated by chlorine analyses (52). [Pg.330]

A common procedure for the preparation of vinylated alkyds is as foUows. A base alkyd resin is brought to the desired endpoint. The resin is then cooled to about 160°C and often diluted with aromatic thinner. The desired monomer is added, usually at about 20 —60% based on the final product, foUowed by an appropriate amount of a free radical initiator. Alternatively, a premix of the monomer and the initiator is added at a controUed rate over most of the reaction. The reaction is brought to monomer reflux, until the residual monomer content has fallen below a specified level. Residual monomer, if any, is stripped away before the product is diluted in a solvent, filtered, and packaged. [Pg.42]

Alkanes can be simultaneously chlorinated and chlorosulfonated. This commercially useful reaction has been appHed to polyethylene (201—203). Aromatics can be chlorinated on the ring, and in the presence of a free-radical initiator alkylaromatic compounds can be chlorinated selectively in the side chain. King chlorination can be selective. A patent shows chlorination of 2,5-di- to 2,4,5-trichlorophenoxyacetic acid free of the toxic... [Pg.143]

Orga.nic Chemistry. The organic chemistry of sulfur dioxide, particularly as it relates to food appHcations, has been discussed (246). Although no reaction takes place with saturated hydrocarbons at moderate temperatures, the simultaneous passage of sulfur dioxide and oxygen into an alkane in the presence of a free-radical initiator or ultraviolet light affords a sulfonic acid such as hexanesulfonic acid [13595-73-8]. This is the so-called sulfoxidation reaction (247) ... [Pg.144]

Free-Radical-Initiated Synthesis. Free-radical-initiated reactions of hydrogen sulfide to alkenes are commonly utilized to prepare primary thiols. These reactions, where uv light is used to initiate the formation of hydrosulfuryl (HS) radicals, are utilized to prepare thousands of metric tons of thiols per year. The same reaction can be performed using a radical initiator, but is not as readily controlled as the uv-initiated reaction. These types of reactions are considered to be anti-Markownikoff addition reactions. [Pg.10]

This synthesis method can be utilised by any alkene or alkyne, but steric hindrance on internal double bonds can cause these reactions to be quite slow. Conjugated dienes and aromatic alkenes are not suited for the ultraviolet light-initiated process. The use of other free-radical initiators is required in free-radical-initiated reactions involving these species. [Pg.11]

Substitution Reactions on the Methyl Group. The reactions that give substitution on the methyl group are generally high temperature and free-radical reactions. Thus, chlorination at ca 100°C, or in the presence of ultraviolet light and other free-radical initiators, successively gives benzyl chloride, benzal chloride, and benzotrichloride. [Pg.176]

Miscellaneous Reactions. Epoxy compounds yield chlorosubstituted carbonates (45). The reaction of chloroformates with hydrogen peroxide or metal peroxides results in the formation of peroxydicarbonates that are used as free-radical initiators of polymerization of vinyl chloride, ethylene, and other unsaturated monomers (46,47). [Pg.40]


See other pages where Reaction radical initiated is mentioned: [Pg.355]    [Pg.355]    [Pg.1043]    [Pg.203]    [Pg.279]    [Pg.269]    [Pg.213]    [Pg.266]    [Pg.221]    [Pg.368]    [Pg.496]    [Pg.105]    [Pg.379]    [Pg.415]    [Pg.437]    [Pg.42]    [Pg.80]    [Pg.81]    [Pg.84]    [Pg.87]    [Pg.514]    [Pg.153]    [Pg.1]    [Pg.177]    [Pg.524]    [Pg.526]   
See also in sourсe #XX -- [ Pg.153 ]




SEARCH



Cascade Reactions Initiated by Addition of C-Centered Radicals to Alkynes

Cascade Reactions Initiated by Addition of N-Centered Radicals to Alkynes

Cascade Reactions Initiated by Addition of O-Centered Radicals to Alkynes (Self-Terminating Radical Oxygenations)

Cascade Reactions Initiated by Addition of P-Centered Radicals to Alkynes

Cascade Reactions Initiated by Addition of S-Centered Radicals to Alkynes

Cascade Reactions Initiated by Addition of Se-Centered Radicals to Alkynes

Cascade Reactions Initiated by Addition of Sn-Centered Radicals to Alkynes

Chain reaction, free-radically initiated

Cobalt-initiated radical reactions

Cycloaddition reactions radical cation-initiated

Free radical chain reactions, initiation

Free radical chain reactions, initiation photochemically

Free radical reactions, graft chemical initiation

Initiating radical

Initiation mechanisms, radical reactions

Initiation mechanisms, radical reactions electron transfer

Initiation mechanisms, radical reactions photolysis

Initiation mechanisms, radical reactions thermolysis

Initiation of free radical reactions

Initiation of free-radical chain reactions

Initiation of radical chain reaction

Initiation reaction

Initiation reaction radical polymerisation

Initiation reactions, radicals, overview

Initiation step, radical chain reaction

Initiation, free radical reactions

Initiation, of radical reactions

Initiators of free radical reactions

Initiators radical reactions

Photochemical initiation free-radical reactions

Radical Chain Reactions Organoborane Initiators

Radical Initiation and Reactions

Radical chain reaction initiation

Radical initiation, Hunsdiecker reaction

Radical initiators

Radical reaction initiation steps

Radical reactions initiation

Radical reactions initiation

Radical site reaction initiation

Radical-chain reactions, inhibition initiation

Radical-initiation

Reaction Initiation at Radical or Charge Sites

Reaction initiated

Reactions Leading to Formation of Initiating Free Radicals

© 2024 chempedia.info