Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Initiation mechanisms, radical reactions

Chemical combustion is initiated by the oxidation or thermal decomposition of a fuel molecule, thereby producing reactive radical species by a chain-initiating mechanism. Radical initiation for a particular fuel/oxygen mixture can result from high-energy collisions with other molecules (M) in the system or from hydrogen-atom abstraction by 02or other radicals, as expressed in reactions 6.1-6.3 ... [Pg.249]

Whereas radical initiators cause radical reactions to occur, radical inhibitors have the opposite effect They trap radicals as they are formed, preventing reactions that take place by mechanisms involving radicals. How radical inhibitors trap radicals is discussed in Section 9.8. [Pg.170]

Single electron transfer generates radicals and although this mechanism is now more common than once thought in non-biological redox reactions, its prevalence in enzyme-catalysed reactions is limited to coenzymes with quinoid-type structures e.g. flavins, coenzyme Q, vitamins C, E and K and to enzymes containing transition metals. Of course, there is a growing interest in metabolic disorders initiated by radical reactions. Reduction by 2-electron transfer can take place by either (a) hydride, H, transfer or (b) discrete electron, e , and proton, H", addition. [Pg.256]

A somewhat similar mechanism may be expected In the case of dlethylhydroxylamlne if H-atom abstraction from the secondary C-H bonds occurs as the Initial OH radical reaction. If, however, the reaction proceeds via H-atom abstraction from the 0-H bond, the atmospheric fate of the resulting (C2H5)2NO radical Is unknown. [Pg.446]

The excited state of ketones can thus initiate free-radical reactions, and this is probably the mechanism for many examples of enhanced photodecomposition of environmental pollutants sensitized by acetone or other simple carbonyl compounds. A good example of such reactions is the acetone-promoted photooxidation of atrazine (24) and related triazine herbicides described by Burkhard and Guth (1976). In water, atrazine absorbs almost no solar UV and was accordingly quite stable to photolysis, but in the presence of large amounts of acetone (about 0.13 M), its half-life was decreased to about 5 hr. The produets were N-dealkylation products and ring-hydroxylated triazines. Similar products were also identified in riboflavin-sensitized photooxidation of triazines (Rejto et al., 1983). Presumably, a principal mechanism of photodecomposition would be H-abstraction from the N-alkyl substituents of atrazine, perhaps in conjunction with electron transfer from the unshmed pairs of the nitrogen atoms. [Pg.394]

Linseed oil, tung oil, and other highly unsaturated oils are used as the basis for the oil-based paints. They dry (polymerize) by an oxidative mechanism, forming ether bonds between the triglyceride molecules, and through a series of oxidatively initiated free radical reactions attacking the double bonds (47,48). Since multiple points of oxidation are present, a three-dimensional polymeric network results. [Pg.16]

Subsequently it was suggested that chain reactions take place during mechanical scission of stressed polymers [124-126]. Each radical formed by mechanical scission is presumed to initiate a radical reaction leading to the rupture of about one thousand chains (See Volume 2, Section VIIA.C). [Pg.16]

ON THE MECHANISM OE INITIATION OF RADICAL REACTIONS BY NITROGEN DIOXIDE DIMERS... [Pg.52]

The main reason that the decreases as the polymerization temperature increases is the increase in the initiation and termination reactions, which leads to a decrease in the kinetic chain length (Fig. 17). At low temperature, the main termination mechanism is polystyryl radical coupling, but as the temperature increases, radical disproportionation becomes increasingly important. Termination by coupling results in higher PS than any of the other termination modes. [Pg.514]

Chemical initiation generates organic radicals, usually by decomposition of a2o (11) or peroxide compounds (12), to form radicals which then react with chlorine to initiate the radical-chain chlorination reaction (see Initiators). Chlorination of methane yields all four possible chlorinated derivatives methyl chloride, methylene chloride, chloroform, and carbon tetrachloride (13). The reaction proceeds by a radical-chain mechanism, as shown in equations 1 through. Chain initiation... [Pg.508]

The regioselectivity of addition of Itydrogen bromide to alkenes can be complicated if a free-radical chain addition occurs in competition with the ionic addition. The free-radical reaction is readily initiated by peroxidic impurities or by light and leads to the anti-Markownikoff addition product. The mechanism of this reaction will be considered more fully in Chapter 12. Conditions that minimize the competing radical addition include use of high-purity alkene and solvent, exclusion of light, and addition of free-radical inhibitors. ... [Pg.353]

Certain kinetic aspects of free-radical reactions are unique in comparison with the kinetic characteristics of other reaction types that have been considered to this point. The underlying difference is that many free-radical reactions are chain reactions that is, the reaction mechanism consists of a cycle of repetitive steps which form many product molecules for each initiation event. The hypothetical mechanism below illustrates a chain reaction. [Pg.683]

The anti-Markownikoff addition of hydrogen bromide to alkenes was one of the earliest free-radical reactions to be put on a firm mechanistic basis. In the presence of a suitable initiator, such as a peroxide, a radical-chain mechanism becomes competitive with the ionic mechanism for addition of hydrogen bromide ... [Pg.708]

The initiating radicals are assumed to be SCN, ONO or N3 free radicals. Tris oxalate-ferrate-amine anion salt complexes have been studied as photoinitiators (A = 436 nm) of acrylamide polymer [48]. In this initiating system it is proposed that the CO2 radical anion found in the primary photolytic process reacts with iodonium salt (usually diphenyl iodonium chloride salt) by an electron transfer mechanism to give photoactive initiating phenyl radicals by the following reaction machanism ... [Pg.251]

Based on the ESR studies of Ce(IV) ion-BzyAcAc-MNP, Ce(IV) ion BzAc-MNP systems as mentioned before, the grafting reaction of P(St-CH2-AcAc) will take place on the methene carbon of 1,3-dikeone via the abstraction of hydrogen by the Ce(I V) ion to form radicals and then initiate monomer graft copolymerization. The initiation mechanism of graft copolymerization is proposed in Scheme (10). [Pg.550]

Alkyl halides can be reduced to alkanes by a radical reaction with tributyltin hydride, (C4H9)3SnH, in the presence of light (hv). Propose a radical chain mechanism by which the reaction might occur. The initiation step is the light-induced homolytic cleavage of the Sn— H bond to yield a tributyltin radical. [Pg.358]

In eq. 8, the rate of polymerization is shown as being half order in initiator (T). This is only true for initiators that decompose to two radicals both of which begin chains. The form of this term depends on the particular initiator and the initiation mechanism. The equation takes a slightly different form in the case of thermal initiation (S), redox initiation, diradical initiation, etc. Side reactions also cause a departure from ideal behavior. [Pg.237]


See other pages where Initiation mechanisms, radical reactions is mentioned: [Pg.30]    [Pg.186]    [Pg.134]    [Pg.274]    [Pg.34]    [Pg.20]    [Pg.30]    [Pg.511]    [Pg.238]    [Pg.422]    [Pg.487]    [Pg.276]    [Pg.16]    [Pg.977]    [Pg.398]    [Pg.67]    [Pg.199]    [Pg.211]    [Pg.41]    [Pg.52]    [Pg.62]    [Pg.379]    [Pg.44]    [Pg.266]    [Pg.379]    [Pg.513]    [Pg.514]    [Pg.605]    [Pg.1074]    [Pg.546]    [Pg.1296]    [Pg.92]   


SEARCH



Initiating radical

Initiation mechanism

Initiation mechanisms, radical reactions electron transfer

Initiation mechanisms, radical reactions photolysis

Initiation mechanisms, radical reactions thermolysis

Initiation reaction

Initiation reaction, mechanism

Radical initiators

Radical mechanism

Radical reactions initiation

Radical reactions mechanisms

Radical-initiation

Reaction initiated

Reaction radical initiated

© 2024 chempedia.info