Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Initiation reaction radical polymerisation

Initiation. Initiation in radical polymerisation consists of two steps the dissociation of the initiator to form two radical species, followed by addition of a single molecule to the initiating radical (Figure 18). Initiators include any organic compound with a labile group, such as an azo (-N = N-), disulfide (—S—S—) or peroxide (-0-0-) compound. The labile bond can be broken by various ways like heat, UV light, /-irradiation or by a redox reaction. [Pg.35]

The photolysis of the benzoate of thiophenol produces benzoyl radicals and thiyl radicals which react further to give benzaldehyde, diphenylsulphide and biphenyl. This reaction has been examined for its potential for the initiation of radical polymerisation processes. ... [Pg.264]

It is well known that the Belousov-Zhabotinsky (BZ) reaction can initiate free radical polymerisation (2) while it is less known that polymers can also affect the dynamics of the BZ reaction. Recently, we have performed preliminary experiments perturbing the BZ reaction with two different water-soluble nonionic polymers containing alcoholic end-groups, namely polypropylene glycol and polyethylene glycol (PEG) (i). It was realized that the Belousov-Zhabotinsky reaction responded to the perturbation in an unexpected way. Thus, a systematic study was undertaken to inquire whether the perturbation effect can be attributed exclusively to PEG reactive endgroups (here primary alcoholic groups) or the chemical nature of polymeric backbone plays also a relevant role. [Pg.293]

Decomposes upon irradiation with UV, initiate free radical polymerisations and other radical reactions. A classic example of a radical reaction that can be initiated by AIBN is the an/i-Markovnikov hydrohalogenation of alkenes. [Pg.199]

Figure 4c illustrates interfacial polymerisation encapsulation processes in which the reactant(s) that polymerise to form the capsule shell is transported exclusively from the continuous phase of the system to the dispersed phase—continuous phase interface where polymerisation occurs and a capsule shell is produced. This type of encapsulation process has been carried out at Hquid—Hquid and soHd—Hquid interfaces. An example of the Hquid—Hquid case is the spontaneous polymerisation reaction of cyanoacrylate monomers at the water—solvent interface formed by dispersing water in a continuous solvent phase (14). The poly(alkyl cyanoacrylate) produced by this spontaneous reaction encapsulates the dispersed water droplets. An example of the soHd—Hquid process is where a core material is dispersed in aqueous media that contains a water-immiscible surfactant along with a controUed amount of surfactant. A water-immiscible monomer that polymerises by free-radical polymerisation is added to the system and free-radical polymerisation localised at the core material—aqueous phase interface is initiated thereby generating a capsule sheU (15). [Pg.320]

Tetraneopentyltitanium [36945-13-8] Np Ti, forms from the reaction of TiCl and neopentyllithium ia hexane at —80° C ia modest yield only because of extensive reduction of Ti(IV). Tetranorbomyltitanium [36333-76-3] can be prepared similarly. When exposed to oxygen, (NpO)4Ti forms. If it is boiled ia ben2ene, it decomposes to neopentane. When dissolved ia monomers, eg, a-olefins or dienes, styrene, or methyl methacrylate, it initiates a slow polymerisation (211,212). Results from copolymerisation studies iadicate a radical mechanism (212). Ultraviolet light iacreases the rate of dissociation to... [Pg.155]

Figure 1 Reaction scheme for the free-radical polymerisation (I is the initiator, R the fragment of initiator, M the monomer and AH the chain transfer agent). Figure 1 Reaction scheme for the free-radical polymerisation (I is the initiator, R the fragment of initiator, M the monomer and AH the chain transfer agent).
A certain free-radical polymerisation reaction is described by the following sequence of initiation, addition and termination... [Pg.310]

It is unfortunate that many workers have not appreciated how essential a clue to the kinetics can be provided by the kinetic order of the whole reaction curve. The use of initial rates was carried over from the practice of radical polymerisation, and it can be very misleading. This was in fact shown by Gwyn Williams in the first kinetic study of a cationic polymerization, in which he found the reaction orders deduced from initial rates and from analysis of the whole reaction curves to be signfficantly different [111]. Since then several other instances have been recorded. The reason for such discrepancies may be that the initiation is neither much faster, nor much slower than the propagation, but of such a rate that it is virtually complete by the time that a small, but appreciable fraction of the monomer, say 5 to 20%, has been consumed. Under such conditions the overall order of the reaction will fall from the initial value determined by the consumption of monomer by simultaneous initiation and propagation, and of catalyst by initiation, to a lower value characteristic of the reaction when the initiation reaction has ceased. [Pg.144]

Atom Transfer Radical Polymerisation (ATRP) was discovered independently by Wang and Matyjaszewski, and Sawamoto s group in 1995. Since then, this field has become a hot topic in synthetic polymer chemistry, with over 1000 papers published worldwide and more than 100 patent applications filed to date. ATRP is based on Kharasch chemistry overall it involves the insertion of vinyl monomers between the R-X bond of an alkyl halide-based initiator. At any given time in the reaction, most of the polymer chains are capped with halogen atoms (Cl or Br), and are therefore dormant and do not propagate see Figure 1. [Pg.21]

In the hrst step, a redox reaction occurs between Ce(IV) and the -CH2OH end group of PEO, generating a free radical in a-position of the -OH group of PEO. In a consequent step, the radical is transferred from the PEO chain to the vinyl monomer. The radicals formed initiate the actual polymerisation reaction (propagation) ... [Pg.328]

Qualitative evidence that ionic species were significant intermediates was obtained from a study of the radiation induced polymerisation of isobutene28,29. Since this monomer was known to be readily polymerised by ionic initiators, polymerisation by 2 MeV electrons at —80 °C seemed to indicate the existence of ionic intermediates. However, the polymerisation was inhibited by oxygen and benzoquinone which are known to be inhibitors for free radical polymerisations. It was subsequently suggested30 that polymerisation was caused by the positive ion (CH3)3C+ produced by the reactions... [Pg.79]

These radical-neutral molecule reactions tend to be chain reactions, which is an important facet of a large percentage of radical mechanisms. As with all chain mechanisms, there are initiation, propagation and termination steps. The efficiency of the chain is defined by the number of propagation cycles (chain length) and, in many reactions, termination becomes unimportant so is not commonly considered, except for conventional radical polymerisations or reactions in viscous solvents. Rate constants for propagation help to determine the synthetic utility and mechanism of radical reactions. Initiation is covered in Section 10.2. [Pg.263]

Kinetics is used to investigate mechanisms of radical additions to alkenes. Outside the solvent cage, the initiator-derived radicals may undergo the desired bimolecular reaction with the substrate, or side reactions. When the substrate is an alkene, the exothermic intermolecular addition of the reactive radical (R ) to the double bond results in the formation of two new single carbon-carbon bonds in place of the double bond. This reaction represents conversion of an initiator into a propagating radical in radical polymerisations, and is becoming increasingly important in a number of synthetically useful intermolecular small molecule reactions. The addition of R to monosubstituted and 1,1-disubstituted alkenes is nearly always at the unsubstituted carbon atom (tail addition), and thus is normally not affected by the individual steric demand of the alkene substituents. Equation 10.4 is the expression for the rate of addition (R ) of R to an alkene where [M] is the monomeric alkene concentration ... [Pg.266]

The reaction model assumed is one in which free-radical polymerisation is compartmentalised within a fixed number of reaction loci, all of which have similar volumes. As has been pointed out above, new radicals are generated in the external phase only. No nucleation of new reaction loci occurs as polymerisation proceeds, and the number of loci is not reduced by processes such as particle agglomeration. Radicals enter reaction loci from the external phase at a constant rate (which in certain cases may be zero), and thus the rate of acquisition of radicals by a single locus is kinetic-ally of zero order with respect to the concentration of radicals within the locus. Once a radical enters a reaction locus, it initiates a chain polymerisation reaction which continues until the activity of the radical within the locus is lost. Polymerisation is assumed to occur almost exclusively within the reaction loci, because the solubility of the monomer in the external phase is assumed to be low. The volumes of the reaction loci are presumed not to increase greatly as a consequence of polymerisation. Two classes of mechanism are in general available whereby the activity of radicals can be lost from reaction loci ... [Pg.434]

The utility of a novel intra-ion-pair electron transfer cleavage reaction has been reported by Schuster et al. [128] for free radical polymerisation initiation... [Pg.200]

The general mechanism in atom transfer radical polymerisation is depicted in Scheme 8.11. The main difference to conventional radical polymerisation is in the presence of a metal complex. Free radicals are generated from reaction between the initiator (such as an organic halide) and the metal species which further controls the reaction by reversibly transforming the free radicals into a dormant species.1"6 However, it ought to be pointed out that in ATRP contrary to, for example, Ziegler-Natta-type catalysts, the polymerisation does not take place at the metal centre. [Pg.177]

Several papers have appeared in the literature in recent years showing that certain metal acetylacetonates can function as initiators for the polymerisation of vinyl and diene monomers in bulk and solution (1 - 12). Results for the kinetics of bulk and solution polymerisation are consistent with the view that the reaction occurs by a free-radical mechanism. The usual free-radical kinetics are operative, but an unusual feature is that, in some cases, certain additives such as chlorinated hydrocarbons have an activating effect upon the reaction by inducing more rapid decomposition of the initiator (2,11,12,13). Other additives which have been reported as promotors for the polymerisation include pyridlne(14) and aldehydes and ketones(15). The complexity of the reaction in the presence of such additives is evident from the fact that chloroform has been reported to be an inhibitor for the poly-merlsatlon(3). [Pg.162]

Recently, Mengoli and Vidotto restudied these systems and obtained evidence for a direct addition reaction in the initiation of the polymerisation of isobutylvinyl ether by the radical cation perchlorate of 9,10-dijiienylanthracene. The kinetics of styrene polymerisations by the above initiator in nitrdienzene at 10°C were also studied. Important termination reactions giving indanyl-type cations were detected and attrSmt-ed to the perchlorate anion. This system was in fact found to display many similarities with that involving the same monomer and perchloric acid ... [Pg.217]

The above investigations clearly show that deqiite their relative stabilities, electro-chemically prepared radical-cations give rise to fairly complicated phenomenologies when they are used as initiators for cationic polymerisations. While the initiation rate constants reported are probably correct, the chemistry of these processes both with reject to the initial step and to the ensuing reactions of the monomer radical cations, is not fully understood. As for the nature and relative concentration of the chain carriers in these systems, more work would need to be done before any firm conclusion can be attained. All these problems stem at least in part from the fact that the radical cations described are only relatively stable and do suffer s)me annihilation reactions. [Pg.217]

Initiation reactions are usually started by an active free radical such as peroxide (-0-0-), e.g. benzoyl peroxide is a good inititator for the free radical addition polymerisation of styrene to produce polystyrene AICI3 is an initiator for the cationic addition polymerisation of isobutylene to form isobutyl synthetic rubber or azobisiso-butyronitrile compounds (-N=N-) (abbreviated to AIBN). Propagation reactions are the continuing process and, eventually, lead to the termination stage that occurs by combination or disproportionation. This usually occurs when the free radicals combine with themselves and signals the end of the polymerisation process. All polymers formed by this process are thermoplastics. Table 4.1 is a list of common polymers prepared by the addition process. [Pg.112]


See other pages where Initiation reaction radical polymerisation is mentioned: [Pg.433]    [Pg.518]    [Pg.384]    [Pg.176]    [Pg.127]    [Pg.519]    [Pg.637]    [Pg.367]    [Pg.348]    [Pg.19]    [Pg.335]    [Pg.268]    [Pg.273]    [Pg.275]    [Pg.275]    [Pg.2539]    [Pg.441]    [Pg.178]    [Pg.178]    [Pg.181]    [Pg.163]    [Pg.184]    [Pg.66]    [Pg.216]    [Pg.221]    [Pg.236]    [Pg.24]    [Pg.49]    [Pg.21]    [Pg.106]   
See also in sourсe #XX -- [ Pg.295 , Pg.297 ]




SEARCH



Initiating radical

Initiation reaction

POLYMERISATION INITIATOR

Polymerisation initiation

Polymerisation radical

Polymerisation reactions

Radical initiators

Radical reactions initiation

Radical-initiation

Reaction initiated

Reaction radical initiated

© 2024 chempedia.info