Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactant shape selectivity , zeolite

There are four widely accepted theories of shape selectivity reactant shape selectivity (RSS), product shape selectivity (PSS), transition state selectivity (TSS) (Figure 12.2), and concentration effect all of them are based on the hypothesis that the reactions occur within the zeolite micropores only. As indicated earlier, this hypothesis is often verified, the external surface area of the commonly used zeolites being much lower (one to two orders of magnitude) than their internal surface area. ... [Pg.236]

A good example for reactant shape selectivity includes the use of catalysts with ERI framework type for selective cracking of linear alkanes, while excluding branched alkanes with relatively large kinetic diameters from the active sites within the narrow 8-MR zeolite channels [61, 62]. Here molecular sieving occurs both because of the low Henry coefficient for branched alkanes and because of the intracrystalline diffusion limitations that develop from slow diffusivities for branched alkane feed molecules. [Pg.435]

Cyclo-paraffins react more readily with REHY, presumably as a result of pore size differences between the 10 ring ZSM-5 and the 12 ring faujasite, resulting in size discrimination (reactant shape selectivity). Over both zeolites, C9-C10 cyclo-olefins are completely converted so that size discrimination is not observed. However, where conversion of cyclo-olefins is not complete (i.e. C6-C8) there is clear evidence for discrimination between the two zeolites (Figure 7). Presumably this high reactivity of C9/C10 cyclo-olefins over either zeolite can be explained by initial facile attack at outer surfaces. [Pg.77]

Shape selective reactions are typically carried out over zeolites, molecular sieves and other porous materials. There are three major classifications of shape selectivity including (1) reactant shape selectivity where reactants of sizes less than the pore size of the support are allowed to enter the pores to react over active sites, (2) product shape selectivity where products of sizes smaller than the pore dimensions can leave the catalyst and (3) transition state shape selectivity where sizes of pores can influence the types of transition states that may form. Other materials like porphyrins, vesicles, micelles, cryptands and cage complexes have been shown to control product selectivities by shape selective processes. [Pg.16]

Primary Shape Selectivity. There are several types of shape and size selectivity in zeolites. First, the reactant molecules may be too large to enter the cavities. A particularly good illustration of this behavior is given by Weisz and co-workers (5). Zeolites A and X were ion exchanged with calcium salts to create acid sites within the zeolite. These acid sites are formed as the water of hydration around the calcium ions hydrolyzes. When these zeolites are contacted with primary and secondary alcohols in the vapor phase, both alcohols dehydrate on CaX but only the primary one reacts on CaA. Since the secondary alcohol is too large to diffuse through the pores of CaA, it can not reach the active sites within the CaA crystals. This kind of selectivity is called reactant shape selectivity and is illustrated in Figure 3. [Pg.210]

Separation of molecules with different sizes can be achieved by a proper choice of zeolites (nature of the zeolite and adjustment of the pore architecture, especially the pore size). The simplest forms of shape selectivity come from the impossibility of certain molecules in a reactant mixture entering the zeolite pores (reactant shape selectivity) or of certain product molecules (formed inside the pore network) exiting from these pores (product shape selectivity). In practice, reactant and product shape selectivities are observed not only when the size of molecules is larger than the size of the pore apertures (size exclusion) but also when their diffusion rate is significantly lower than that of the other molecules. Differences of diffiisivities by 2 orders of magnitude are required to produce significant selectivities between reactant species (35). [Pg.16]

There are numerous examples of reactant shape selectivity in the hydrogenation of olefins over noble-metal loaded zeolites (49). This can be important to remove impurities from olefin feedstocks, or as a criterion to assess the location of the noble metal, at the outer or inner surface of the zeolite. However, shape selectivity is also increasingly used in reductive conversion of (poly)functional molecules. [Pg.273]

One of the most in ortant properties of zeolites is their ability to cany out shqie selective reactions [5]. These can be cl sified as, firstfy, product shape selective reactions in which the only products formed are those which can diffiise out of e pores of die zeolite, second, reactant shape selective reactions which occur when some of the molecules in a reactant mbcture are too large to diffiise through the catalyst pores, and, thirdfy, restricted transition-state selective reactions in which the only reactions which occur are those in which qiace exists in the pores or cavities to allow the formation of the activated transition state con lex. In some cases where the zeolite is three dimensional the gze of the channel intersections will also be a determining ictor. This unique catalytic property is related to the pore size of the zeolite and has led to the synthesis of zeohtes with a very w e range of pore gzes. [Pg.324]

As far as the adsorption and skeletal isomerization of cyclopropane and the product propene are concerned, results mainly obtained by infrared spectroscopy, volumetric adsorption experiments and kinetic studies [1-4], revealed that (i) both cyclopropane and propene are adsorbed in front of the exchangeable cations of the zeolite (ii) adsorption of propene proved to be reversible accompanied by cation-dependent red shift of the C=C stretching frequency (iii) a "face-on" sorption complex between the cyclopropane and the cation is formed (iv) the rate of cyclopropane isomerization is affected by the cation type (v) a reactant shape selectivity is observed for the cyclopropane/NaA system (vi) a peculiar catalytic behaviour is found for LiA (vii) only Co ions located in the large cavity act as active sites in cyclopropane isomerization. On the other hand, only few theoretical investigations dealing with the quantitative description of adsorption process have been carried out. [Pg.771]

FIGURE 10.4 Reactant shape selectivity for zeolite catalysts. [Pg.297]

Control of the selectivity in catalytic reactions is one of the challenging topics. For example, the shape selectivity in catalytic reactions was described for the first time by Mobil research workers [3]. At the present, some categories of shape selectivity have been described in the literatures, i.e. reactant shape selectivity, product shape selectivity and transition state shape selectivity [4,5]. Zeolites such as ZSM-5 show the promising catalytic performance for the shape selectivity of reactants or products in the alkylation of aromatics and in the catalytic cracking of hydrocarbons [6]. The shape selectivity by zeolite catalysts... [Pg.585]

One example of reactant shape selectivity is the dehydration of linear and branched alcohols observed over zeolite A [LTA topology (26)]. Figure 10.2 shows part of the LTA structure. Typically secondary alcohols react more rapidly than primary alcohols. However, secondary alcohols do not react over Ca-LTA due to their inability to adsorb into the zeolite micropores. The same phenomenon is observed with linear and branched alkanes, where linear alkanes are readily adsorbed in the zeolite, whereas... [Pg.336]

Examples of shape selective catalysis for each dass are well illustrated with the addic zeolites, but there are far fewer examples of such catalysis with metal containing zeolites. Reactant shape selectivity is illustrated by the early work of... [Pg.351]

Figure C2.12.10. Different manifestations of shape-selectivity in zeolite catalysis. Reactant selectivity (top), product selectivity (middle) and transition state selectivity (bottom). Figure C2.12.10. Different manifestations of shape-selectivity in zeolite catalysis. Reactant selectivity (top), product selectivity (middle) and transition state selectivity (bottom).
The important property of ZSM-5 and similar zeolites is the intercrystalline catalyst sites, which allow one type of reactant molecule to diffuse, while denying diffusion to others. This property, which is based on the shape and size of the reactant molecules as well as the pore sizes of the catalyst, is called shape selectivity. Chen and Garwood document investigations regarding the various aspects of ZSM-5 shape selectivity in relation to its intercrystalline and pore structure. [Pg.163]

Shape selective catalysis as typically demonstrated by zeolites is of great interest from scientific as well as industrial viewpoint [17], However, the application of zeolites to organic reactions in a liquid-solid system is very limited, because of insufficient acid strength and slow diffusion of reactant molecules in small pores. We reported preliminarily that the microporous Cs salts of H3PW12O40 exhibit shape selectivity in a liquid-solid system [18]. Here we studied in more detail the acidity, micropore structure and catal3rtic activity of the Cs salts and wish to report that the acidic Cs salts exhibit efficient shape selective catalysis toward decomposition of esters, dehydration of alcohol, and alkylation of aromatic compound in liquid-solid system. The results were discussed in relation to the shape selective adsorption and the acidic properties. [Pg.582]

Conclusive evidence has been presented that surface-catalyzed coupling of alcohols to ethers proceeds predominantly the S 2 pathway, in which product composition, oxygen retention, and chiral inversion is controlled 1 "competitive double parkir of reactant alcohols or by transition state shape selectivity. These two features afforded by the use of solid add catalysts result in selectivities that are superior to solution reactions. High resolution XPS data demonstrate that Brpnsted add centers activate the alcohols for ether synthesis over sulfonic add resins, and the reaction conditions in zeolites indicate that Brpnsted adds are active centers therein, too. Two different shape-selectivity effects on the alcohol coupling pathway were observed herein transition-state constraint in HZSM-5 and reactant approach constraint in H-mordenite. None of these effects is a molecular sieving of the reactant molecules in the main zeolite channels, as both methanol and isobutanol have dimensions smaller than the main channel diameters in ZSM-S and mordenite. [Pg.610]

When a microporous material, e.g. a zeolite, is used as a catalyst, only those molecules whose diameters are small enough to enter or pass through the pores can react and leave the catalyst. This is the basis for so-called shape-selectivity (Fig. 3.40). Reactant selectivity is encountered when a fraction of the feed molecules can enter the zeolite, whereas the other fraction cannot. For the molecules produced in the interior the same reasoning applies. The favoured products are the less bulky ones, i.e. those with diameters smaller than the pores of the zeolites. For instance, in the zeolite represented in Fig. 3.40 the production of p-xylene is favoured over the production of o- and m-xylenes. Also the bulkiness of the transition state can lead to a different. selectivity, as shown in the last example in Fig 3.40. [Pg.96]

The metal complexes in an SIB catalyst are confined to separate supercages. Consequently, the formation of inactive dimers is no longer possible. Shape-selectivity is another feature of SIB catalysts that follows from the restricted space inside the zeolite pore system. This can be simply due to discrimination in size of the reactant molecules (a large reactant molecule is excluded from the zeolite) or to a constrained orientation of the reactant at the catalytic site (transition state selectivity). [Pg.1433]

The use of zeolites can overcome many of these limitations and provide new controlled entries into these oxidized hydrocarbons and new materials. For example, some of the most valuable industrial intermediates are terminally oxidized hydrocarbons, snch as n-hexanol or adipic acid, that are not readily available in free-radical chain processes. The ability of zeolites to function as shape-selective catalysts can, in principle, be used to restrict access, by reactant or transition state selectivity, to sites not normally attacked by oxidants [3]. [Pg.276]

Catalysis of 12-membered zeolites, H-mordenlte (HM), HY, and HL was studied In the alkylation of biphenyl. The para-selectlvltles were up to 70% for Isopropylblphenyl (IPBP), and 80% for dllsopropylblphenyl (DIBP) In HM catalyzed Isopropylatlon. Catalysis of HY and HL zeolites was nonselectlve. These differences depend on differences In pore structure of zeolites. Catalysis of HM to give the least bulky Isomer Is controlled shape-selectlvely by sterlc restriction of the transition state and by the entrance of IPBP Isomers. Alkylation with HY and HL Is controlled by the electron density of reactant molecule and by the stability of product molecules because these zeolites have enough space for the transition state to allow all IPBP and DIBP isomers. Dealuminatlon of HM decreased coke deposition to enhance shape selective alkylation of biphenyl. [Pg.303]

Reglospeclflc functionalization of biphenyl is drawing attention as one of key steps in developing advanced materials such as liquid crystals and liquid crystal polymers [1-5]. Catalysis using zeolites is the most promising way to prepare sterlcally small molecules by differentiating between reactants, products, and/or intermediates according to their size and shape. Sterlc restrictions by zeolites Increase the formation of preferred products and prevent the formation of undesirable products [6]. We describe herein shape selective catalysis of 12-membered zeolites, H-mordenite (HM), HY and HL In the alkylation of biphenyl. [Pg.303]


See other pages where Reactant shape selectivity , zeolite is mentioned: [Pg.171]    [Pg.403]    [Pg.432]    [Pg.238]    [Pg.118]    [Pg.586]    [Pg.355]    [Pg.265]    [Pg.340]    [Pg.281]    [Pg.296]    [Pg.250]    [Pg.351]    [Pg.32]    [Pg.185]    [Pg.609]    [Pg.8]    [Pg.32]    [Pg.35]    [Pg.27]    [Pg.117]    [Pg.232]    [Pg.237]    [Pg.416]    [Pg.424]    [Pg.443]    [Pg.545]   


SEARCH



Reactant shape selectivity

Reactant shape selectivity , zeolite catalysis

Shape reactant

Shape selection

Shape selectivity

Shape-selective zeolite

Zeolites shape selectivity

© 2024 chempedia.info