Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rate steady-state conditions

All parameters depend on the time and the shear rate. Steady-state conditions are obtained for t — CO. Variable (°, ) denotes the steady state values of the shear stress. The anisotropic character of the flowing solutions give rise to additional stress components, which are different in all three principal directions. This phenomenon is called the Weissenberg effect, or the normal stress phenomenon. From a physical point of view, it means that all diagonal elements of the stress tensor deviate from zero. It is convenient to express the mechanical anisotropy of the flowing solutions by the first and second normal stress difference ... [Pg.446]

The high rate of mass transfer in SECM enables the study of fast reactions under steady-state conditions and allows the mechanism and physical localization of the interfacial reaction to be probed. It combines the usefid... [Pg.1941]

Dir, whereas for small distances d < r), /r Did. The large effective obtainable enables fast heterogeneous reaction rates to be measured under steady-state conditions. Zhou and Bard measured a rate constant of 6 x 10 Ms for the electro-hydrodimerization of acrylonitrile (AN) and observed the short-lived intennediate AN for this process [65]. [Pg.1942]

New radicals are introduced by thermolysis of the hydroperoxide by chain-branching decomposition (eq. 4). Radicals are removed from the system by chain-termination reaction(s) (eq. 5). Under steady-state conditions, the production of new radicals is in balance with the rate of radical removal by termination reactions and equation 8 appHes for the scheme of equations 1—5 where r. = rate of new radical introduction (eq. 4). [Pg.334]

A second common approximation is the steady-state condition. That arises in the example if /fy is fast compared with kj in which case [i] remains very small at all times. If [i] is small then d[I] /dt is likely to be approximately zero at all times, and this condition is commonly invoked as a mnemonic in deriving the differential rate equations. The necessary condition is actually somewhat weaker (9). Eor equations 22a and b, the steady-state approximation leads, despite its different origin, to the same simplification in the differential equations as the pre-equihbrium condition, namely, equations 24a and b. [Pg.514]

Rotational viscometers often were not considered for highly accurate measurements because of problems with gap and end effects. However, corrections can be made, and very accurate measurements are possible. Operating under steady-state conditions, they can closely approximate industrial process conditions such as stirring, dispersing, pumping, and metering. They are widely used for routine evaluations and quahty control measurements. The commercial instmments are effective over a wide range of viscosities and shear rates (Table 7). [Pg.184]

Most theories of droplet combustion assume a spherical, symmetrical droplet surrounded by a spherical flame, for which the radii of the droplet and the flame are denoted by and respectively. The flame is supported by the fuel diffusing from the droplet surface and the oxidant from the outside. The heat produced in the combustion zone ensures evaporation of the droplet and consequently the fuel supply. Other assumptions that further restrict the model include (/) the rate of chemical reaction is much higher than the rate of diffusion and hence the reaction is completed in a flame front of infinitesimal thickness (2) the droplet is made up of pure Hquid fuel (J) the composition of the ambient atmosphere far away from the droplet is constant and does not depend on the combustion process (4) combustion occurs under steady-state conditions (5) the surface temperature of the droplet is close or equal to the boiling point of the Hquid and (6) the effects of radiation, thermodiffusion, and radial pressure changes are negligible. [Pg.520]

Determination of Crystallization Kinetics. Under steady-state conditions, the total number production rate of crystals in a perfectly mixed crystallizer is identical to the nucleation rate, B. Accordingly,... [Pg.349]

A useful simphfication of the total energy equation applies to a particular set of assumptions. These are a control volume with fixed solid boundaries, except for those producing shaft work, steady state conditions, and mass flow at a rate m through a single planar entrance and a single planar exit (Fig. 6-4), to whi(m the velocity vectors are perpendicular. As with Eq. (6-11), it is assumed that the stress vector tu is normal to the entrance and exit surfaces and may be approximated by the pressure p. The equivalent pressure, p + pgz, is assumed to be uniform across the entrance and exit. The average velocity at the entrance and exit surfaces is denoted by V. Subscripts 1 and 2 denote the entrance and exit, respectively. [Pg.633]

Under steady-state conditions the temperature of the evaporating surface increases until the rate of sensible heat transfer to the surface equals the rate of heat removed by evaporation from the surface. To calculate this temperature, it is convenient to modify Eq. (12-26) in terms of humidity rather than partial-pressure difference, as follows ... [Pg.1191]

As the oxygen transfer rate under steady-state conditions must equal oxygen uptake, K a may be calculated ... [Pg.2139]

When collecting meaningful field fractionating column data, the column must not only have constant flow rates, but the flows must give a good material balance (no accumulation). In addition, a steady state condition must exist for the given flow rates. [Pg.71]

The result of the steady-state condition is that the overall rate of initiation must equal the total rate of termination. The application of the steady-state approximation and the resulting equality of the initiation and termination rates permits formulation of a rate law for the reaction mechanism above. The overall stoichiometry of a free-radical chain reaction is independent of the initiating and termination steps because the reactants are consumed and products formed almost entirely in the propagation steps. [Pg.683]

Photoinitiation is an excellent method for studying the pre- and posteffects of free radical polymerization, and from the ratio of the specific rate constant (kx) in non-steady-state conditions, together with steady-state kinetics, the absolute values of propagation (kp) and termination (k,) rate constants for radical polymerization can be obtained. [Pg.244]

In biochemical engineering processes, measurement of dissolved oxygen (DO) is essential. The production of SCP may reach a steady-state condition by keeping the DO level constant, while the viable protein is continuously harvested. The concentration of protein is proportional to oxygen uptake rate. Control of DO would lead us to achieve steady SCP production. Variation of DO may affect retention time and other process variables such as substrate and product concentrations, retention time, dilution rate and aeration rate. Microbial activities are monitored by the oxygen uptake rate from the supplied ah or oxygen. [Pg.14]

Bioreactor with the assumption of tank diameter is equal to the height of the liquid (/), = H). Assume steady-state condition, no cell accumulation and no death rate ... [Pg.39]

The rate of formation of a product is easily evaluated at steady-state condition for inlet and... [Pg.89]

At steady-state condition, the biomass concentration remains constant, that is, dX/dt = 0, and (5.6.1.3) concludes to /x = /) therefore the specific growth rate is equal to the dilution rate. [Pg.90]

Finally, at steady-state condition, as has been stated above (5.6.1.3), the rate of substrate consumption is equal to the biomass generation, with the assumption of zero death rate ... [Pg.93]

The Monod rate model is valid for a CSTR bioreactor with maximum specific growth rate of 0.5 li 1 and K, 2 g-1. What would be a suitable dilution rate at steady-state condition, where there is no cell death if initial substrate concentration is 50g-l-1 and yield of biomass on substrate is 100%. [Pg.164]

Saccharomyces cerevisiae is anaerobically grown in a continuous culture at 30°C. Glucose is used as substrate and ammonia as nitrogen source. A mixture of glycerol and ethanol is produced. At steady-state condition mass the flow rate is stated. The following reaction is proposed for the related bioprocess 4,6... [Pg.230]

In the major catalytic processes of the petroleum and chemical industries, continuous and steady state conditions are the rule where the temperature, pressure, composition, and flow rate of the feed streams do not vary significantly. Transient operations occur during the start-up of a unit, usually occupying a small fraction of the time of a cycle from start-up to shut-down for maintenance or catalyst regeneration. [Pg.63]

Traditionally, measurement of kp has required determination of the rate of polymerization under steady state (to give kpi k,7) and non-steady state conditions... [Pg.216]

In actual fact, both approaches have considerable merit, and it would appear that the two schools are describing the actual physical mechanism from two different points of view. Certainly, a steady-state condition exists in which the rate of heat generation does not exceed the rate of heat loss from the combustion zone. There are also purely dynamic conditions related to the creation of the same imbalance between heat generation and heat loss. These purely static and purely dynamic conditions can be considered as the end points for a whole range of combined static (i.e., minimum-pressure) and dynamic (depressurization) conditions by which termination can be achieved. L -termination is probably one of these intermediate conditions. [Pg.63]


See other pages where Rate steady-state conditions is mentioned: [Pg.347]    [Pg.421]    [Pg.653]    [Pg.347]    [Pg.421]    [Pg.653]    [Pg.1938]    [Pg.2684]    [Pg.399]    [Pg.495]    [Pg.224]    [Pg.247]    [Pg.1339]    [Pg.1679]    [Pg.504]    [Pg.627]    [Pg.15]    [Pg.54]    [Pg.307]    [Pg.481]    [Pg.189]    [Pg.110]    [Pg.15]    [Pg.18]    [Pg.74]    [Pg.84]    [Pg.85]    [Pg.410]    [Pg.75]    [Pg.834]   
See also in sourсe #XX -- [ Pg.71 ]




SEARCH



Rate steady-state

Steady conditions

Steady rate

Steady-state conditions

© 2024 chempedia.info