Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rate measurements chemical

The key to experimental gas-phase kinetics arises from the measurement of time, concentration, and temperature. Chemical kinetics is closely linked to time-dependent observation of concentration or amount of substance. Temperature is the most important single statistical parameter influencing the rates of chemical reactions (see chapter A3.4 for definitions and fiindamentals). [Pg.2114]

Propellants and explosives are chemical compounds or mixtures that rapidly produce large volumes of hot gases when properly initiated. Propellants bum at relatively low rates measured in centimeters per second explosives detonate at rates of kilometers per second. Pyrotechnic materials evolve large amounts of heat but much less gas than propellants and explosives (see Pyrotechnics). [Pg.3]

Water Activity. The rates of chemical reactions as well as microbial and en2yme activities related to food deterioration have been linked to the activity of water (qv) in food. Water activity, at any selected temperature, can be measured by determining the equiUbrium relative humidity surrounding the food. This water activity is different from the moisture content of the food as measured by standard moisture tests (4). [Pg.457]

During the nineteenth century the growth of thermodynamics and the development of the kinetic theory marked the beginning of an era in which the physical sciences were given a quantitative foundation. In the laboratory, extensive researches were carried out to determine the effects of pressure and temperature on the rates of chemical reactions and to measure the physical properties of matter. Work on the critical properties of carbon dioxide and on the continuity of state by van der Waals provided the stimulus for accurate measurements on the compressibiUty of gases and Hquids at what, in 1885, was a surprisingly high pressure of 300 MPa (- 3,000 atmor 43,500 psi). This pressure was not exceeded until about 1912. [Pg.76]

The overall requirement is 1.0—2.0 s for low energy waste compared to typical design standards of 2.0 s for RCRA ha2ardous waste units. The most important, ie, rate limiting steps are droplet evaporation and chemical reaction. The calculated time requirements for these steps are only approximations and subject to error. For example, formation of a skin on the evaporating droplet may inhibit evaporation compared to the theory, whereas secondary atomization may accelerate it. Errors in estimates of the activation energy can significantly alter the chemical reaction rate constant, and the pre-exponential factor from equation 36 is only approximate. Also, interactions with free-radical species may accelerate the rate of chemical reaction over that estimated solely as a result of thermal excitation therefore, measurements of the time requirements are desirable. [Pg.56]

The experimentally measured dependence of the rates of chemical reactions on thermodynamic conditions is accounted for by assigning temperature and pressure dependence to rate constants. The temperature variation is well described by the Arrhenius equation. [Pg.513]

Because the rates of chemical reactions are controlled by the free energy of the transition state, information about the stmcture of transition states is crucial to understanding reaction mechanism. However, because transition states have only transitory existence, it is not possible to make experimental measurements that provide direct information about their structure.. Hammond has discussed the circumstances under which it is valid to relate transition-state stmcture to the stmcture of reactants, intermediates, and products. His statements concerning transition-state stmcture are known as Hammond s postulate. Discussing individual steps in a reaction mechanism, Hammond s postulate states if two states, as, for example, a transition state and an unstable intermediate, occur consecutively during a reaction process and have neariy the same energy content, their interconversion will involve only a small reorganization of molecular stmcture. ... [Pg.217]

Experimental work was undertaken (G8) to provide the information necessary to permit a test of this theoretical model. The system used bore complete geometrical and chemical similarity to that used by Cooper et al. (C9) so that their mass-transfer rate measurements, along with the average residence-time and power-consumption results determined in the experimental work (see Section II,D), were used to compare the experimental values with the model. [Pg.359]

Chemical kinetics is the study of the rates of chemical reactions. Its practice entails the measurement of concentrations as a function of time. These measurements are extended to other variables, such as the concentrations of additional species, pH, temperature, pressure, isotopic substitution, solvent, salt concentration, and so on. [Pg.1]

The liquid-liquid interface is not only a boundary plane dividing two immiscible liquid phases, but also a nanoscaled, very thin liquid layer where properties such as cohesive energy, density, electrical potential, dielectric constant, and viscosity are drastically changed along with the axis from one phase to another. The interfacial region was anticipated to cause various specific chemical phenomena not found in bulk liquid phases. The chemical reactions at liquid-liquid interfaces have traditionally been less understood than those at liquid-solid or gas-liquid interfaces, much less than the bulk phases. These circumstances were mainly due to the lack of experimental methods which could measure the amount of adsorbed chemical species and the rate of chemical reaction at the interface [1,2]. Several experimental methods have recently been invented in the field of solvent extraction [3], which have made a significant breakthrough in the study of interfacial reactions. [Pg.361]

Moreira-Nordemann LM (1980) Use disequilibrium in measuring chemical weathering rate of... [Pg.573]

Some economies are possible if equilibrium is assumed between selected compartments, an equal fugacity being assignable. This is possible if the time for equilibration is short compared to the time constant for the dominant processes of reaction or advection. For example, the rate of chemical uptake by fish from water can often be ignored (and thus need not be measured or known within limits) if the chemical has a life time of hundreds of days since the uptake time is usually only a few days. This is equivalent to the frequently used "steady state" assumption in chemical kinetics in which the differential equation for a short lived intermediate species is set to zero, thus reducing the equation to algebraic form. When the compartment contains a small amount of chemical or adjusts quickly to its environment, it can be treated algebraically. [Pg.180]

The improvement in the rate of chemical reactions is reversed when temperature is cooler and at temperatures as low as 30 K (a warm comer of TMC-1) the exponential term is of order 10-279 and nearly all reactions between neutral species are frozen out at 50 K. Two important classes of reactions survive radical-radical chemistry and ion-molecule chemistry. The importance of these different reaction types will become apparent later with the construction of the models of molecular clouds. For the moment, however, laboratory measurements of reactions in radicals such as C2H have shown that even with temperatures as low as 15 K the rate constant for reactions of the type ... [Pg.130]

The versatility and accuracy of the oxygen consumption method in heat release measurement was demonstrated. The critical measurements include flow rates and species concentrations. Some assumptions need to be invoked about (a) heat release per unit oxygen consumed and (b) chemical expansion factor, when flow rate into the system is not known. Errors in these assumptions are acceptable. As shown, the oxygen consumption method can be applied successfully in a fire endurance test to obtain heat release rates. Heat release rates can be useful for evaluating the performance of assemblies and can provide measures of heat contribution by the assemblies. The implementation of the heat release rate measurement in fire endurance testing depends on the design of the furnace. If the furnace has a stack or duct system in which gas flow and species concentrations can be measured, the calorimetry method is feasible. The information obtained can be useful in understanding the fire environment in which assemblies are tested. [Pg.427]

The rate of chemical reaction must be measured and cannot be predicted from properties of chemical species. A thorough discussion of experimental methods cannot be given at this point, since it requires knowledge of types of chemical reactors that can be used, and the ways in which rate of reaction can be represented. However, it is useful to consider the problem of experimental determination even in a preliminary way, since it provides a better understanding of the methods of chemical kinetics from the outset. [Pg.5]

A large variety of tools, utilizing both chemical and physical methods, are available to the experimentalist for rate measurements. Some can be classified as ex-situ techniques, requiring the removal and analysis of an aliquot of the reacting mixture. Other, in-situ, methods rely on instantaneous measurements of the state of the reacting system without disturbance by sample collection. [Pg.46]

Both ion and electron transfer reactions entail the transfer of charge through the interface, which can be measured as the electric current. If only one charge transfer reaction takes place in the system, its rate is directly proportional to the current density, i.e. the current per unit area. This makes it possible to measure the rates of electrochemical reactions with greater ease and precision than the rates of chemical reactions occurring in the bulk of a phase. On the other hand, electrochemical reactions are usually quite sensitive to the state of the electrode surface. Impurities have an unfortunate tendency to aggregate at the interface. Therefore electrochemical studies require extremely pure system components. [Pg.8]

Most analyses of kinetic data have the object of identifying the constants of a rate equation based on the law of mass action and possibly some mass transfer relation.. The law of mass action Is expressed In terms of concentrations of the participants, so ultimately the chemical composition must be known as a function of time. In the laboratory the chemical composition Is determined by some instrument that is suitably calibrated to provide the needed information. Titration, refractive index, density, chromatography, spectrometry, polarimetry, conductimetry, absorbance, magnetic resonance — all of these are used at one time or another to measure chemical composition. In some cases, the calibration to chemical composition is linear with the reading. [Pg.105]

Chemical reaction rates, 14 607. See also Kinetic measurements Chemical reactions. See also Chemical processes Reaction entries with absorption, 2 47-48, 71-76 activated carbon for control of, 4 755 on adsorbents, 2 629-630, 650-651 atomic level of, 16 736 contexts of, 22 336 engine knock and, 22 390—391 heterogeneous, 22 331-332, 339 homogeneous, 22 339 independent and dependent, 22 336—337 mass-transfer coefficients with, 20 753-755... [Pg.169]

Retention time is the basic measure used in GC to identify compounds. It is a physical property of the analyte and is dependant on the separation conditions such as temperature, flow rate and chemical composition of the stationary phase. Solubility of the analyte in the stationary phase, which is based on the energy of intermolecular interactions between the analyte and stationary phase, is the most important factor in determining retention time. In Fig. 14.1, the retention... [Pg.452]

A key factor in the use of NMR for measuring dissociation constants is its sensitivity to the rate of chemical exchange . Complex formation necessarily involves the exchange of the nuclei or molecules being observed between (at least) two states - the free ligand or protein and the complex. The fact that the appearance of the NMR spectrum is sensitive not only to the position of this equilibrium but also to the rates involved has a major influence on the design of NMR experiments for measuring dissociation constants and on the analysis of such data. [Pg.309]

As stated above, SCADA systems can be designed to measure a variety of equipment operating conditions and parameters, or volumes and flow rates, or chemical and chemical mixture quality parameters, and to respond to changes in those parameters... [Pg.119]


See other pages where Rate measurements chemical is mentioned: [Pg.16]    [Pg.16]    [Pg.1510]    [Pg.1617]    [Pg.2498]    [Pg.513]    [Pg.109]    [Pg.136]    [Pg.172]    [Pg.157]    [Pg.652]    [Pg.372]    [Pg.226]    [Pg.82]    [Pg.170]    [Pg.502]    [Pg.18]    [Pg.270]    [Pg.263]    [Pg.247]    [Pg.29]    [Pg.261]    [Pg.4]    [Pg.50]    [Pg.422]    [Pg.65]    [Pg.162]    [Pg.217]    [Pg.12]    [Pg.118]   
See also in sourсe #XX -- [ Pg.284 , Pg.285 , Pg.286 , Pg.287 ]




SEARCH



Chemical analysis reaction rates, measuring

Chemical rate

Measuring rate

Measuring the Rates of Chemical Reactions

Rate measurement

© 2024 chempedia.info