Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radioactivity radioactive isotope

A few natural isotopes are radioactive. Of the three isotopes of hydrogen, only that of mass 3 (tritium) i.s radioactive. Radioactive isotopes can be examined by other instrumental means than mass spectrometry, but these other means cannot see the nonradioactive isotopes and are not as versatile as a mass Spectrometer. [Pg.423]

The isotopes of a particular element have the same number of protons in the nucleus but a different number of neutrons, giving them the same proton number (atomic number) but a different nucleon number (mass number, i.e. number of protons + number of neutrons). Isotopes may be stable or radioactive. Radioactive isotopes (radioisotopes) disintegrate spontaneously at random to yield radiation and a decay product. [Pg.235]

Krypton, Kr, is an elemental, colorless, odorless, inert gas. It is noncombustible, nontoxic, and nonreactive however, it is an asphyxiant gas and will displace oxygen in the air. Krypton 85 is radioactive and has a half-life of 10.3 years. The four-digit UN identification number for krypton is 1056 as a compressed gas and 1970 as a cryogenic liquid. These forms of krypton are not radioactive. Radioactive isotopes of krypton are shipped under radioactive labels and placards as required. Its primary uses are in the activation of phosphors for self-luminous markers, detecting leaks, and in medicine to trace blood flow. [Pg.350]

Uranium has two major isotopes, (99.3 %) and (0.7 %). is relatively plentiful and stable, while is scarce and radioactive. Radioactive isotopes are susceptible to, and often spontaneously undergo, fission. During fission, the nucleus of an atom splits, several smaller atoms are produced, and energy and subatomic particles (gamma radiation, neutrons, alpha, and beta particles predominantly) are released. In addition to spontaneous fission, fission can also be induced when the... [Pg.4]

Radioactive isotopes show excellent properties as tracers since they are detectable in very low concentrations (i.e. high dilution) and with high specificity. Further y-emitting radioactive tracers can be measured in situ, through pipe and vessel walls which enables e.g. studies of processes under high pressures, and processes involving a gaseous phase. [Pg.1053]

The tracer solution is made from oil soluble bromobenzene with the radioactive isotope Br-82. The tracer solution is injected through a thin nozzle inserted into the pipeline through the valve previously connected to the injection instrumentation. The injection device provides a very sharp beginning and termination of the fraction of labelled oil. [Pg.1060]

Naturally occurring argon is a mixture of three isotopes. Twelve other radioactive isotopes are known to exist. [Pg.43]

Seventeen isotopes of potassium are known. Ordinary potassium is composed of three isotopes, one of which is 40oK (0.0118%), a radioactive isotope with a half-life of 1.28 x IO9 years. [Pg.46]

About 20 kg of scandium (as SC2O3) are now being used yearly in the U.S. to produce high-intensity lights, and the radioactive isotope 46Sc is used as a tracing agent in refinery crackers for crude oil, etc. [Pg.50]

Natural lanthanum is a mixture of two stable isotopes, 138La and 139La. Twenty three other radioactive isotopes are recognized. [Pg.129]

Also present in the first test tube is a synthetic analog of ATP in which both the 2 and 3 hydroxyl groups have been replaced by hydrogens This compound is called 2 3 dideoxyadenosme triphosphate (ddATP) Similarly ddTTP is added to the second tube ddGTP to the third and ddCTP to the fourth Each tube also contains a primer The primer is a short section of the complementary DNA strand which has been labeled with a radioactive isotope of phosphorus ( P) When the electrophoresis gel is examined at the end of the experiment the positions of the DNAs formed by chain extension of the primer are located by a technique called autoradiography which detects the particles emitted by the P isotope... [Pg.1181]

Table of Radioactive Isotopes, 8th ed., Wiley-Interscience, New York, 1986. [Pg.355]

The data were extracted from M. Lederer and V. S. Shirley, Table of Isotopes, 7th ed., Wiley-Interscience, New York, 1978 A. H. Wapstra and G. Audi, The 1983 Atomic Mass Evaluation, Nucl. Phys. A432 l-54 (1985) V. S. Shirley, ed.. Table of Radioactive Isotopes, 8th ed., Wiley-Interscience, New York, 1986 and P. Raghavan, Table of Nuclear Moments, At. Data Nucl. Data Tables, 42 189 (1989). [Pg.778]

Monna and co-workers studied the use of radioactive isotopes as a means of dating sediments collected from the bottom of lakes and estuaries. To verify this method they analyzed a 208po standard known to have an activity of 77.5 decays/min, obtaining the following results... [Pg.100]

The rate of decay, or activity, for a radioactive isotope follows first-order kinetics... [Pg.643]

An important characteristic property of a radioactive isotope is its half-life, fj/2, which is the amount of time required for half of the radioactive atoms to disintegrate. For first-order kinetics the half-life is independent of concentration and is given as... [Pg.643]

The time required for half of the initial number of a radioactive isotope s atoms to disintegrate (ti/2). [Pg.643]

Three common quantitative applications of radiochemical methods of analysis are considered in this section the direct analysis of radioactive isotopes by measuring their rate of disintegration, neutron activation, and the use of radioactive isotopes as tracers in isotope dilution. [Pg.644]

Direct Analysis of Radioactive Analytes The concentration of a long-lived radioactive isotope is essentially constant during the period of analysis. As shown in Example 13.6, the sample s activity can be used to calculate the number of radioactive particles that are present. [Pg.644]

The direct analysis of short-lived radioactive isotopes using the method outlined in Example 13.6 is less useful since it provides only a transient measure of the isotope s concentration. The concentration of the isotope at a particular moment... [Pg.644]

The radioactive isotope of 13AI has a characteristic decay process that includes the release of a beta particle and a gamma ray. [Pg.645]

Equations 13.31 and 13.32 are only valid if the radioactive element in the tracer has a half-life that is considerably longer than the time needed to conduct the analysis. If this is not the case, then the decrease in activity is due both to the effect of dilution and the natural decrease in the isotope s activity. Some common radioactive isotopes for use in isotope dilution are listed in Table 13.1. [Pg.647]

One example of a characterization application is the determination of a sample s age based on the kinetics for the decay of a radioactive isotope present in the sample. The most common example is carbon-14 dating, which is used to determine the age of natural organic materials. [Pg.647]

Selectivity rarely is of concern with radiochemical methods because most samples contain only a single radioactive isotope. When several radioactive isotopes are present, differences in the energies of their respective radioactive particles can be used to determine each isotope s activity. [Pg.649]

Radiochemical methods of analysis take advantage of the decay of radioactive isotopes. A direct measurement of the rate at which a radioactive isotope decays may be used to determine its concentration in a sample. For analytes that are not naturally radioactive, neutron activation often can be used to induce radioactivity. Isotope dilution, in which a radioactively labeled form of an analyte is spiked into the sample, can be used as an internal standard for quantitative work. [Pg.659]

For the naturally occurring elements, many new artificial isotopes have been made, and these are radioactive. Although these new isotopes can be measured in a mass spectrometer, this process could lead to unacceptable radioactive contamination of the instrument. This practical consideration needs to be considered carefully before using mass spectrometers for radioactive isotope analysis. [Pg.343]

Few of the naturally occurring elements have significant amounts of radioactive isotopes, but there are many artificially produced radioactive species. Mass spectrometry can measure both radioactive and nonradioactive isotope ratios, but there are health and safety issues for the radioactive ones. However, modem isotope instmments are becoming so sensitive that only very small amounts of sample are needed. Where radioactive isotopes are a serious issue, the radioactive hazards can be minimized by using special inlet systems and ion pumps in place of rotary pumps for maintaining a vacuum. For example, mass spectrometry is now used in the analysis of Pu/ Pu ratios. [Pg.354]

Lead occurs naturally as a mixture of four non-radioactive isotopes, and Pb, as well as the radioactive isotopes ° Pb and Pb. All but Pb arise by radioactive decay of uranium and thorium. Such decay products are known as radiogenic isotopes. [Pg.365]

Thus, the ratios of lead isotopes 204,206,207 and 208 can vary markedly depending on the source of the lead. One use of these ratios lies in determination of the ages of rocks from the abundances of the various isotopes and the half-lives of their precursor radioactive isotopes. [Pg.365]

It is not necessary that there be two isotopes in both the sample and the spike. One isotope in the sample needs to be measured, but the spike can have one isotope of the same element that has been produced artificially. The latter is often a long-lived radioisotope. For example, and are radioactive and all occur naturally. The radioactive isotope does not occur naturally but is made artificially by irradiation of Th with neutrons. Since it is commercially available, this last isotope is often used as a spike for isotope-dilution analysis of natural uranium materials by comparison with the most abundant isotope ( U). [Pg.366]

Plutonium (Pu) is an artificial element of atomic number 94 that has its main radioactive isotopes at 2 °Pu and Pu. The major sources of this element arise from the manufacture and detonation of nuclear weapons and from nuclear reactors. The fallout from detonations and discharges of nuclear waste are the major sources of plutonium contamination of the environment, where it is trapped in soils and plant or animal life. Since the contamination levels are generally very low, a sensitive technique is needed to estimate its concentration. However, not only the total amount can be estimated. Measurement of the isotope ratio provides information about its likely... [Pg.369]

Many artificial (likely radioactive) isotopes can be created through nuclear reactions. Radioactive isotopes of iodine are used in medicine, while isotopes of plutonium are used in making atomic bombs. In many analytical applications, the ratio of occurrence of the isotopes is important. For example, it may be important to know the exact ratio of the abundances (relative amounts) of the isotopes 1, 2, and 3 in hydrogen. Such knowledge can be obtained through a mass spectrometric measurement of the isotope abundance ratio. [Pg.423]

Each of the elements has a number of isotopes (2,4), all radioactive and some of which can be obtained in isotopicaHy pure form. More than 200 in number and mosdy synthetic in origin, they are produced by neutron or charged-particle induced transmutations (2,4). The known radioactive isotopes are distributed among the 15 elements approximately as follows actinium and thorium, 25 each protactinium, 20 uranium, neptunium, plutonium, americium, curium, californium, einsteinium, and fermium, 15 each herkelium, mendelevium, nobehum, and lawrencium, 10 each. There is frequently a need for values to be assigned for the atomic weights of the actinide elements. Any precise experimental work would require a value for the isotope or isotopic mixture being used, but where there is a purely formal demand for atomic weights, mass numbers that are chosen on the basis of half-life and availabiUty have customarily been used. A Hst of these is provided in Table 1. [Pg.212]

Nuclear Fuel Reprocessing. Spent fuel from a nuclear reactor contains Pu, Th, and many other radioactive isotopes (fission... [Pg.80]

Radiocarbon dating (43) has probably gained the widest general recognition (see Radioisotopes). Developed in the late 1940s, it depends on the formation of the radioactive isotope and its decay, with a half-life of 5730 yr. After forms in the upper stratosphere through nuclear reactions of... [Pg.418]

Tracer Type. A discrete quantity of a foreign substance is injected momentarily into the flow stream and the time interval for this substance to reach a detection point, or pass between detection points, is measured. From this time, the average velocity can be computed. Among the tracers that have historically been used are salt, anhydrous ammonia, nitrous oxide, dyes, and radioactive isotopes. The most common appHcation area for tracer methods is in gas pipelines where tracers are used to check existing metered sections and to spot-check unmetered sections. [Pg.67]


See other pages where Radioactivity radioactive isotope is mentioned: [Pg.100]    [Pg.82]    [Pg.276]    [Pg.80]    [Pg.14]    [Pg.44]    [Pg.228]    [Pg.340]    [Pg.402]    [Pg.34]    [Pg.106]    [Pg.126]    [Pg.194]    [Pg.546]    [Pg.643]    [Pg.773]    [Pg.838]    [Pg.88]    [Pg.418]    [Pg.122]   
See also in sourсe #XX -- [ Pg.605 ]




SEARCH



Isotope radioactive

Isotopic radioactive

Radioactivity isotopes

© 2024 chempedia.info