Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isotopes artificial

One of the most significant sources of change in isotope ratios is caused by the small mass differences between isotopes and their effects on the physical properties of elements and compounds. For example, ordinary water (mostly Ej O) has a lower density, lower boiling point, and higher vapor pressure than does heavy water (mostly H2 0). Other major changes can occur through exchange processes. Such physical and kinetic differences lead to natural local fractionation of isotopes. Artificial fractionation (enrichment or depletion) of uranium isotopes is the basis for construction of atomic bombs, nuclear power reactors, and depleted uranium weapons. [Pg.353]

All naturally occurring beryllium compounds are. made up of the Be isotope. Artificially produced isotopes occur during some nuclear reactor operations and include 6Be, 7 Be, sBe, and l0Be. [Pg.195]

Atomic masses of naturally occurring elements are listed in the periodic table. (Because atomic mass is the weighted average of naturally occurring isotopes, artificial elements by definition do not have atouuc masses. The mass... [Pg.100]

Symbol P At. wt. 30.9738 At. no. 15 CAS [7723-14-0] valences 3, 5 position in the periodic table group VB, along with nitrogen, arsenic, antimony and bismuth natmal isotope P radioactive isotopes (artificial) ... [Pg.836]

Isotope Atoms of the same element (all chemically identical) having the same atomic number but containing different numbers of neutrons, giving different mass number. Some elements occur naturally as a mixture of different isotopes. All elements can produce radio isotopes artificially. [Pg.70]

Bracketed figures are for the most commonly available isotope in the case of artificial elements. [Pg.46]

Cobalt-60, an artificial isotope, is an important gamma ray source, and is extensively used as a tracer and a radiotherapeutic agent. [Pg.84]

Thirty isotopes are recognized. Only one stable isotope, 1271 is found in nature. The artificial radioisotope 1311, with a half-life of 8 days, has been used in treating the thyroid gland. The most common compounds are the iodides of sodium and potassium (KI) and the iodates (KIOs). Lack of iodine is the cause of goiter. [Pg.122]

Following the movement of airborne pollutants requires a natural or artificial tracer (a species specific to the source of the airborne pollutants) that can be experimentally measured at sites distant from the source. Limitations placed on the tracer, therefore, governed the design of the experimental procedure. These limitations included cost, the need to detect small quantities of the tracer, and the absence of the tracer from other natural sources. In addition, aerosols are emitted from high-temperature combustion sources that produce an abundance of very reactive species. The tracer, therefore, had to be both thermally and chemically stable. On the basis of these criteria, rare earth isotopes, such as those of Nd, were selected as tracers. The choice of tracer, in turn, dictated the analytical method (thermal ionization mass spectrometry, or TIMS) for measuring the isotopic abundances of... [Pg.7]

Recently, it has become possible to create isotopes that do not exist naturally. These are the artificial isotopes, and all are radioactive. For example, 13 artificially created isotopes of iodine are known, as well as its naturally occurring monoisotopic form of mass 127. Mass spectrometry is able to measure m/z values for both natural and artificial isotopes. [Pg.339]

For the naturally occurring elements, many new artificial isotopes have been made, and these are radioactive. Although these new isotopes can be measured in a mass spectrometer, this process could lead to unacceptable radioactive contamination of the instrument. This practical consideration needs to be considered carefully before using mass spectrometers for radioactive isotope analysis. [Pg.343]

Few of the naturally occurring elements have significant amounts of radioactive isotopes, but there are many artificially produced radioactive species. Mass spectrometry can measure both radioactive and nonradioactive isotope ratios, but there are health and safety issues for the radioactive ones. However, modem isotope instmments are becoming so sensitive that only very small amounts of sample are needed. Where radioactive isotopes are a serious issue, the radioactive hazards can be minimized by using special inlet systems and ion pumps in place of rotary pumps for maintaining a vacuum. For example, mass spectrometry is now used in the analysis of Pu/ Pu ratios. [Pg.354]

It is not necessary that there be two isotopes in both the sample and the spike. One isotope in the sample needs to be measured, but the spike can have one isotope of the same element that has been produced artificially. The latter is often a long-lived radioisotope. For example, and are radioactive and all occur naturally. The radioactive isotope does not occur naturally but is made artificially by irradiation of Th with neutrons. Since it is commercially available, this last isotope is often used as a spike for isotope-dilution analysis of natural uranium materials by comparison with the most abundant isotope ( U). [Pg.366]

Plutonium (Pu) is an artificial element of atomic number 94 that has its main radioactive isotopes at 2 °Pu and Pu. The major sources of this element arise from the manufacture and detonation of nuclear weapons and from nuclear reactors. The fallout from detonations and discharges of nuclear waste are the major sources of plutonium contamination of the environment, where it is trapped in soils and plant or animal life. Since the contamination levels are generally very low, a sensitive technique is needed to estimate its concentration. However, not only the total amount can be estimated. Measurement of the isotope ratio provides information about its likely... [Pg.369]

Many artificial (likely radioactive) isotopes can be created through nuclear reactions. Radioactive isotopes of iodine are used in medicine, while isotopes of plutonium are used in making atomic bombs. In many analytical applications, the ratio of occurrence of the isotopes is important. For example, it may be important to know the exact ratio of the abundances (relative amounts) of the isotopes 1, 2, and 3 in hydrogen. Such knowledge can be obtained through a mass spectrometric measurement of the isotope abundance ratio. [Pg.423]

Many artificially made isotopes are known, and most have very short half-lives. For example, Au has a half-life of 53 sec. [Pg.425]

Principal ion. A molecular or fragment ion that is made up of the most abundant isotopes of each of its atomic constituents. In the case of compounds that have been artificially isotopically enriched in one or more positions (such as or CH2D2), the principal ion can be... [Pg.442]

At about the same time, the artificial isotope plutonium-239 [15117-48-3] was discovered and was recognized as also being fissionable. This led to the conjecture that a controlled chain reaction might be achieved and that neutrons could be used to produce enough plutonium for a weapon. [Pg.212]

The isotope plutonium-238 [13981 -16-3] Pu, is of technical importance because of the high heat that accompanies its radioactive decay. This isotope has been and is being used as fuel in small terrestrial and space nuclear-powered sources (3,4). Tu-based radioisotope thermal generator systems dehvered 7 W/kg and cost 120,000/W in 1991 (3). For some time, %Pu was considered to be the most promising power source for the radioisotope-powered artificial heart and for cardiovascular pacemakers. Usage of plutonium was discontinued, however, after it was determined that adequate elimination of penetrating radiation was uncertain (5) (see PROSTHETIC AND BIOMEDICAL devices). [Pg.191]

Silicon [7440-21-3] Si, from the Latin silex, silicis for flint, is the fourteenth element of the Periodic Table, has atomic wt 28.083, and a room temperature density of 2.3 gm /cm. SiUcon is britde, has a gray, metallic luster, and melts at 1412°C. In 1787 Lavoisier suggested that siUca (qv), of which flint is one form, was the oxide of an unknown element. Gay-Lussac and Thenard apparently produced elemental siUcon in 1811 by reducing siUcon tetrafluoride with potassium but did not recognize it as an element. In 1817 BerzeHus reported evidence of siUcon occurring as a precipitate in cast iron. Elemental siUcon does not occur in nature. As a constituent of various minerals, eg, siUca and siUcates such as the feldspars and kaolins, however, siUcon comprises about 28% of the earth s cmst. There are three stable isotopes that occur naturally and several that can be prepared artificially and are radioactive (Table 1) (1). [Pg.524]

Sodium is not found ia the free state ia nature because of its high chemical reactivity. It occurs naturally as a component of many complex minerals and of such simple ones as sodium chloride, sodium carbonate, sodium sulfate, sodium borate, and sodium nitrate. Soluble sodium salts are found ia seawater, mineral spriags, and salt lakes. Principal U.S. commercial deposits of sodium salts are the Great Salt Lake Seades Lake and the rock salt beds of the Gulf Coast, Virginia, New York, and Michigan (see Chemicals frombrine). Sodium-23 is the only naturally occurring isotope. The six artificial radioisotopes (qv) are Hsted ia Table 1 (see Sodium compounds). [Pg.161]

Atoms with the same value of Zbut different values of A are isotopes (Table 11.1). Many isotopes are stable but others are naturally or artificially radioactive, i.e. their atomic nuclei disintegrate, emitting particles or radiation. This changes the nuclear structure of the atom and often results in the production of a different element. [Pg.390]

This book presents a unified treatment of the chemistry of the elements. At present 112 elements are known, though not all occur in nature of the 92 elements from hydrogen to uranium all except technetium and promethium are found on earth and technetium has been detected in some stars. To these elements a further 20 have been added by artificial nuclear syntheses in the laboratory. Why are there only 90 elements in nature Why do they have their observed abundances and why do their individual isotopes occur with the particular relative abundances observed Indeed, we must also ask to what extent these isotopic abundances commonly vary in nature, thus causing variability in atomic weights and possibly jeopardizing the classical means of determining chemical composition and structure by chemical analysis. [Pg.1]

Some of the important properties of Group 7 elements are summarized in Table 24.1. Technetium is an artificial element, so its atomic weight depends on which isotope has been produced. The atomic weights of Mn and Re, however, are known with considerable accuracy. In the case of... [Pg.1043]

An important selection of materials to packaging, particularly food, is based on the permeability of the materials to oxygen, water vapor, and, in the case of packaging bananas, to ethylene gas that is used to artificially ripen the bananas. Selective permeability provides chemical separations, one of the most interesting of which is the use of PTFE materials to separate the hexafluorides of the different isotopes of uranium. [Pg.240]

Guy, R.D., Reid, D.M. Krouse, H.R. (1980). Shifts in carbon isotope ratios of two Cj halotypes under natural and artificial conditions. Oecologia, 44, 241-7. [Pg.66]

A few elements, among them fluorine and phosphoras, occur naturally with just one isotope, but most elements are isotopic mixtures. For example, element number 22 is titanium (Ti), a light and strong metal used in Jet engines and in artificial human Joints. There are five naturally occurring isotopes of Ti. Each one has 22 protons in its nuclei, but the number of neutrons varies from 24 to 28. In a chemical reaction, all isotopes of an element behave nearly identically. This means that the isotopic composition of an element remains essentially constant. The isotopic composition of Ti (number percentages) is... [Pg.84]


See other pages where Isotopes artificial is mentioned: [Pg.5587]    [Pg.5587]    [Pg.5587]    [Pg.5587]    [Pg.14]    [Pg.340]    [Pg.340]    [Pg.22]    [Pg.154]    [Pg.353]    [Pg.362]    [Pg.122]    [Pg.137]    [Pg.439]    [Pg.104]    [Pg.326]    [Pg.117]    [Pg.170]    [Pg.15]    [Pg.604]    [Pg.1254]    [Pg.499]    [Pg.1298]    [Pg.84]   
See also in sourсe #XX -- [ Pg.67 , Pg.573 ]




SEARCH



Artificial isotopes production

Isotopes artificially produced

Radioactive isotopes artificial

Radioactive isotopes artificially produced

© 2024 chempedia.info