Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radioactive waste reprocessing

In the course of works each of the decommissioning objects can be a source of SNF, SRW, LRW, noxious chemicals or other non-radioactive waste reprocessible and re-usable in industry. Still, the main feature of the complex decommissioning objects is the presence of SNF and generation of RW during work execution. Considering a special importance of SNF, SRW and LRW for the work to be done and for justification of priorities, at some work phase they can be attributed to the category of independent objects of management. This is a quite natural decision because in the course of the... [Pg.24]

The use of the state-of-the-art low waste technologies for radioactive waste reprocessing ... [Pg.276]

Chemical processing or reprocessing (39) of the fuel to extract the plutonium and uranium left a residue of radioactive waste, which was stored in underground tanks. By 1945, the reactors had produced enough plutonium for two nuclear weapons. One was tested at Alamogordo, New Mexico, in July 1945 the other was dropped at Nagasaki in August 1945. [Pg.212]

Nuclear Waste. NRC defines high level radioactive waste to include (/) irradiated (spent) reactor fuel (2) Hquid waste resulting from the operation of the first cycle solvent extraction system, and the concentrated wastes from subsequent extraction cycles, in a faciHty for reprocessing irradiated reactor fuel and (3) soHds into which such Hquid wastes have been converted. Approximately 23,000 metric tons of spent nuclear fuel has been stored at commercial nuclear reactors as of 1991. This amount is expected to double by the year 2001. [Pg.92]

Other options for eliminating weapons-grade plutonium arc to seal it permanently in solid radioactive waste and dispose of it in waste repositories, and to use the plutonium to fuel fast neutron reactors (without reprocessing the plutonium into a MOX fuel). [Pg.870]

Congress has decided that reprocessing will not be practiced in this country so that we will not be in the plutonium production business. This seems like a safe thing to do since this action will minimize terrorism threats. Reprocessing generates chemi cal wastes but greatly reduces the volume of the highly radioactive waste. It also isolates plutonium and unused fuel for possible use as new fuel. [Pg.884]

Americium is released into surface water primarily from plutonium production reactors, nuclear fuel reprocessing facilities, or in nuclear accidents. It may also be released from radioactive waste storage facilities. Since 241Pu decays into 241 Am,241 Am is also released as a result of 241Pu releases. Water sampling data were used to estimate effluent releases from the SRS from the plant s start up in... [Pg.144]

The fact that spent fuel reprocessing and recycle are essential components ofgood nuclear non-proliferation and radioactive waste management practices. These actions are needed so that more efficient use can be made offissionablc materials, and unwanted radioactive fission products can be disposed of without need for permanent safeguards. In addition, potential weapons usable materials are destroyed through beneficial use. [Pg.67]

Nuclear power produces spent fuel that contains radionuclides that will emit radiation for hundreds and thousands of years. At present, they are being stored underground indefinitely in heavy, shock-proof containers. These containers could be stolen or may corrode with time, or leak as a result of earthquakes and tremors. Transportation and reprocessing accidents could cause environmental contamination. One solution is for the United States to go to breeder reactors, as has been done in other countries, to reduce the level and amount of radioactive waste. [Pg.386]

Plutonium nitride, 19 691 Plutonium oxalates, 19 691 Plutonium(IV) oxide, 19 669 Plutonium oxides, 19 688-689 Plutonium oxyhalides, 19 689-690 Plutonium pnictides, 19 691 Plutonium-producing reactors, storage of radioactive waste from, 25 855 Plutonium radioisotopes, 21 319 Plutonium refractory compounds, 19 687 Plutonium reprocessing plants, 19 686 Plutonium silicides, 19 690-691 Plutonium solutions, self-radiolysis of, 19 694... [Pg.719]

The production of electricity fiom nuclear fission energy is accompanied by formation of radioactive waste, of which the larger hazard is the presence of long-lived transuranium isotopes. The problems associated with this waste are still debated, but if the transuranium isotopes could be removed by exhaustive reprocessing and transmuted in special nuclear devices, the hazard of the waste would be drastically reduced (Chapter 12). This may require new selective extractants and diluents as well as new process schemes. Research in this field is very active. [Pg.28]

High-level waste (HLW), intermediate-level waste (ILW), and low-level waste (LLW) are produced at all stages of the nuclear fuel cycle as well as in the non-nuclear industry, research institutions, and hospitals. The nuclear fuel cycle produces liquid, solid, and gaseous wastes. Moreover, spent nuclear fuel (SNF) is considered either as a source of U and Pu for re-use or as radioactive waste (Johnson Shoesmith 1988), depending on whether the closed ( reprocessing ) or the open ( once-through ) nuclear fuel cycle is realized, respectively (Ewing, 2004). [Pg.37]

The waste management program is therefore faced with the potential that the radioactive waste from the commercial fuel cycle could be in the form of spent fuel elements which have been declared to be waste or in the form of solidified high-level waste produced from the byproducts stream of the reprocessing plant. [Pg.3]

The counting techniques described in this paper are also readily applicable to studies of "hot radioactive waste (z.e.j radioactive waste from reprocessed nuclear fuel). With this type of material, the cesium can be analyzed as 30-y (662-keV y), the RE as 13-y Eu (964-keV and 1408-keV y), strontium as 28-y Sr (after chemical separation and beta counting), and the actinides by group separation and alpha counting. [Pg.124]

Nuclear power plants use fuel rods with a life span of about three years. Each year, roughly one-third of spent fuel rods are removed and stored in cooling basins, either at the reactor site or elsewhere. Typical modern nuclear power plants discharge about 30 tons of the spent fuel per reactor per year. Comparatively little of Lite radioactive wastes, as is currently reliably known worldwide, has been processed for return to the fuel cycle. Actually, fuel reprocessing causes a net increase in the volume of radioactive wastes, but, as in the ease of military wastes, they are less hazardous in the long term. Nevertheless, the wastes from reprocessing also must be disposed of with great care. [Pg.1122]

Fuel reprocessing has three objectives (a) to recover U or Pu from the spent fuel for reuse as a nuclear reactor fuel or to render the waste less hazardous, (b) to remove fission products from the actinides to lessen short-term radioactivity problems and in the case of recycle of the actinides, to remove reactor poisons, and (c) to convert the radioactive waste into a safe form for storage. Fuel reprocessing was/is important in the production of plutonium for weapons use. [Pg.481]


See other pages where Radioactive waste reprocessing is mentioned: [Pg.454]    [Pg.444]    [Pg.558]    [Pg.777]    [Pg.454]    [Pg.444]    [Pg.558]    [Pg.777]    [Pg.242]    [Pg.460]    [Pg.758]    [Pg.780]    [Pg.787]    [Pg.135]    [Pg.164]    [Pg.73]    [Pg.28]    [Pg.32]    [Pg.35]    [Pg.210]    [Pg.525]    [Pg.203]    [Pg.325]    [Pg.323]    [Pg.11]    [Pg.14]    [Pg.16]    [Pg.17]    [Pg.18]    [Pg.21]    [Pg.6]    [Pg.243]    [Pg.2]    [Pg.3]    [Pg.4]    [Pg.484]    [Pg.886]   
See also in sourсe #XX -- [ Pg.199 ]




SEARCH



Radioactive waste

Reprocessed

Reprocessed wastes

Reprocessing wastes

© 2024 chempedia.info