Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anthracene radical anion

Anthracene Anthracene radical anion Anthracenated electron... [Pg.66]

Protonation becomes a rapid reaction in protic solvents and in the presence of acids, as demonstrated for, e.g., -butyl acrylate in aqueous solution [207], methyl acrylate in EtOH [208], cinnamates in the presence of phenol in DMF [209], and benzaldehyde in ethanolic buffer solution [210]. Rate constants for protonation of aromatic radical anions (anthracene [211], naphthalene, 2-methoxynaphthalene, 2,3-dimethoxynaphthalene) by a number of proton donors including phenols, acetic acid, and benzoic acids in aprotic DMF were found to vary from 5.0 X 10 M- s-> (for anthracene, in the presence of p-chlorophenol) to 6.2 x lO s (for anthracene, in the presence of pentachlorophenol) [212]. For dimedone, PhOH, or PhC02H the rate of protonation depends on the hydrogen-bond basicity of the solvent and increases in the order DMSO < DMF MeCN [213],... [Pg.695]

Examples include luminescence from anthracene crystals subjected to alternating electric current (159), luminescence from electron recombination with the carbazole free radical produced by photolysis of potassium carba2ole in a fro2en glass matrix (160), reactions of free radicals with solvated electrons (155), and reduction of mtheiiium(III)tris(bipyridyl) with the hydrated electron (161). Other examples include the oxidation of aromatic radical anions with such oxidants as chlorine or ben2oyl peroxide (162,163), and the reduction of 9,10-dichloro-9,10-diphenyl-9,10-dihydroanthracene with the 9,10-diphenylanthracene radical anion (162,164). Many other examples of electron-transfer chemiluminescence have been reported (156,165). [Pg.270]

Hayon23 studied the yields of ions and excited states in pulse radiolysis of liquid DMSO using anthracene as a solute to determine the yield of free ions and naphthalene as a solute to measure the yield of triplet excited states. Anthracene is known to react with solvated electrons to give the anthracene radical anion, A T... [Pg.895]

Compounds of this type may only be isolated in the presence of suitable donor molecules, among those, diglyme has been used frequently, but other examples include TMEDA or 2,2,1-crypt for sodium.150 The reduction of naphthalene or anthracene with sodium in diglyme affords separated ions with the radical anion [Na(diglyme)2][naphthalene/anthracene] 139, 140.151... [Pg.17]

Other selected examples include tris(tetramethylethylene diamine-sodium)-9,9-dianthryl 143,154 alkali metal salts of 9,10-bis(diisopropylsilyl)anthracene 144,155 as well as the closely related naked 9,10-bis(trimethylsilyl)anthra-cene radical anion 145.156 This chemistry is further extended to the solvent-shared and solvent-separated alkali metal salts of perylene radical anions and dianions 146, 147,156 while other examples focus on alkali metal salts of 1,2-diphenylbenzene and tetraphenylethylene derivatives, where reduction with potassium in diglyme afforded contact molecules with extensive 7r-bonding, [l,2-Ph2C6H4K(diglyme)] 148.157 Extensive 7r-coordination is also observed in (1,1,4,4 tetraphenylbutadiene-2,3-diyl)tetracesiumbis(diglyme)bis(methoxyethanolate) 149.158... [Pg.17]

In the ethyl and isopropyl cases, the steepest descent pathway still connects the Sn2-TS to the SN2 products but the formation of ET products along the bifurcation in the indirect ET pathway is expected to increase. These trends are likely to be at the origin of the stereochemistry of the reaction of the anion radical of anthracene with optically active 2-octyl halides recalled at the beginning of this section. [Pg.185]

In complex organic molecules calculations of the geometry of excited states and hence predictions of chemiluminescent reactions are very difficult however, as is well known, in polycyclic aromatic hydrocarbons there are relatively small differences in the configurations of the ground state and the excited state. Moreover, the chemiluminescence produced by the reaction of aromatic hydrocarbon radical anions and radical cations is due to simple one-electron transfer reactions, especially in cases where both radical ions are derived from the same aromatic hydrocarbon, as in the reaction between 9.10-diphenyl anthracene radical cation and anion. More complex are radical ion chemiluminescence reactions involving radical ions of different parent compounds, such as the couple naphthalene radical anion/Wurster s blue (see Section VIII. B.). [Pg.69]

Chemically inert triplet quenchers e.g. trans-stilbene, anthracene, or pyrene, suppress the characteristic chemiluminescence of radical-ion recombination. When these quenchers are capable of fluorescence, as are anthracene and pyrene, the energy of the radical-ion recombination reaction is used for the excitation of the quencher fluorescence 15°). Trans-stilbene is a chemically inert 162> triplet quencher which is especially efficient where the energy of the first excited triplet state of a primary product is about 0.2 eV above that of trans-stilbene 163>. This condition is realized, for example, in the energy-deficient chemiluminescent system 10-methyl-phenothiazian radical cation and fluoranthene radical anion 164>. [Pg.121]

Fundamental knowledge on the structures and properties of the ladder polysilanes has accumulated in our research for the past 15 years. Some results were unpredictable, including the silicon double helix structure, the domino oxidation, the formation of persistent radical anions, the Diels-Alder reactions at the 1,4-positions of anthracene, etc. These results let us recognize that the construction of novel structures will open the new chemistry. [Pg.163]

Formally related reactions are observed when anthracene [210] or arylole-fines [211-213] are reduced in the presence of carboxylic acid derivatives such as anhydrides, esters, amides, or nitriles. Under these conditions, mono- or diacylated compounds are obtained. It is interesting to note that the yield of acylated products largely depends on the counterion of the reduced hydrocarbon species. It is especially high when lithium is used, which is supposed to prevent hydrodimerization of the carboxylic acid by ion-pair formation. In contrast to alkylation, acylation is assumed to prefer an Sn2 mechanism. However, it is not clear if the radical anion or the dianion are the reactive species. The addition of nitriles is usually followed by hydrolysis of the resulting ketimines [211-213]. [Pg.114]

The competition between ET and 5n2 processes in the reaction between radical anions of various aromatic compounds, e.g. anthracene, pyrene, (E)-stilbene, and m- and / -cyanotoluene, and substrates such as RHal (where R = Me, Et, Bu, 2-Bu, neopentyl, and 1-adamantyl) or various methanesulfonates has been studied in DMF as solvent. The reaction mechanism could be characterized electrochemically in many of the systems indicated above. The presence of an 5n2 component is related not only to the steric requirements of the substrate, but also to the magnitude of the driving force for the ET process. [Pg.338]

Rate constants for the protonation of radical-anions in dimethylformamide by added phenol can be determined by electrochemical techniques [8], Pulse radiolysis methods have been used to measure the rate constants in an alcohol solvent. This technique generates the radical-anion on a very short time scale and uv-spectroscopy is then be used to follow the protonation of this species to give the neutral radical with different uv-absorption characteristics [9]. In the case of anthracene, the protonation rate is 5 x 10 M" s with phenol in dimethylformamide and 5 x 10 s in neat isopropanol. Protonation by hydrogen ions approaches the diflusion-controlled limit with a rate constant of 10 M s in ethanol [9]. [Pg.240]

The reaction involves the transfer of an electron from the alkali metal to naphthalene. The radical nature of the anion-radical has been established from electron spin resonance spectroscopy and the carbanion nature by their reaction with carbon dioxide to form the carboxylic acid derivative. The equilibrium in Eq. 5-65 depends on the electron affinity of the hydrocarbon and the donor properties of the solvent. Biphenyl is less useful than naphthalene since its equilibrium is far less toward the anion-radical than for naphthalene. Anthracene is also less useful even though it easily forms the anion-radical. The anthracene anion-radical is too stable to initiate polymerization. Polar solvents are needed to stabilize the anion-radical, primarily via solvation of the cation. Sodium naphthalene is formed quantitatively in tetrahy-drofuran (THF), but dilution with hydrocarbons results in precipitation of sodium and regeneration of naphthalene. For the less electropositive alkaline-earth metals, an even more polar solent than THF [e.g., hexamethylphosphoramide (HMPA)] is needed. [Pg.414]

The major oxidation product isolated was anthracene, perhaps formed in part from the hydroperoxide (I). However, significant amounts of potassium superoxide accompanied the anthracene. This result suggests that the major source of anthracene involved the oxidation of the dianion. In pure DMSO in the presence of excess potassium tert-butoxide, a trace of oxygen converts 9,10-dihydroanthracene, 9,10-dihy-drophenanthrene, or acenaphthene to the hydrocarbon radical anions. These products are apparently formed in the oxidation of the hydrocarbon dianions. [Pg.205]

At —30°C in THF, in the presence of anthracene a single-electron transfer from 118 to anthracene occurs, with the formation of insoluble (Ci4Hio)2Mg(THF)6 (equation 12) . A further reaction with MgCl2 affords the radical anion complex [Mg2Cl3(THF)6] [CiaHio] " (119). An X-ray crystal-structure determination of 119 clearly shows the presence of anthracene radical anions as distinct species in the crystal lattice (Figure 58) . The bond lengths and the deformation of the electron density of the anthracene radical anion clearly show that in 119 the LUMO is occupied by one electron . [Pg.46]

FIGURE 58. Unit-cell contents of crystalline 119 showing the separated anthracene radical anions and [Mg2Cl3(THF)6] cations... [Pg.47]

The close association between metal ions and p-benzoquinones catalyzes their Diels-Alder reactions with anthracenes. The efficiency of the metal cations correlates with their Lewis acidity171. A mechanism proceeding via radical-anions for a [3,3] sigmatropic rearrangement was established172. [Pg.97]


See other pages where Anthracene radical anion is mentioned: [Pg.289]    [Pg.360]    [Pg.289]    [Pg.360]    [Pg.238]    [Pg.161]    [Pg.81]    [Pg.177]    [Pg.5]    [Pg.26]    [Pg.39]    [Pg.240]    [Pg.21]    [Pg.119]    [Pg.269]    [Pg.124]    [Pg.110]    [Pg.184]    [Pg.23]    [Pg.93]    [Pg.239]    [Pg.255]    [Pg.351]    [Pg.440]    [Pg.11]    [Pg.664]    [Pg.96]    [Pg.24]    [Pg.210]   
See also in sourсe #XX -- [ Pg.45 , Pg.46 ]




SEARCH



Anions Anthracene

Radical anion of anthracene

The protonation of anthracene anion radical by phenol

© 2024 chempedia.info