Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatic hydrocarbons, anion radicals

Other reactions of aromatic hydrocarbon anion radicals and amine cation radicals lead to exciplex emission, particularly in nonpolar solvents [15], Luminescence from exciplexes is most definitively observed in systems for which the redox reaction is energetically unable to yield a localized excited state. The free energy of exciplex formation, jE exc, is associated with solvation and geometry optimization in the encounter complex of and A+. [Pg.394]

MO) with the protons in the nodal plane. The mechanism of coupling (discussed below) requires contact between the unpaired electron and the proton, an apparent impossibility for n electrons that have a nodal plane at the position of an attached proton. A third, pleasant, surprise was the ratio of the magnitudes of the two couplings, 5.01 G/1.79 G = 2.80. This ratio is remarkably close to the ratio of spin densities at the a and (3 positions, 2.62, predicted by simple Hiickel MO theory for an electron placed in the lowest unoccupied MO (LUMO) of naphthalene (see Table 2.1). This result led to Hiickel MO theory being used extensively in the semi-quantitative interpretation of ESR spectra of aromatic hydrocarbon anion and cation radicals. [Pg.24]

Light emission occurs during the reaction of numerous radical anions of aromatic hydrocarbons with radical cations such as Wurster s red 103, Wurster s blue 104 or radical cations derived from triarylamines of the type 105, 106. [Pg.123]

More recently, charge-transfer emission was anticipated when solutions of hydrocarbon anion radical salts in dimethoxyethane were mixed with Wurster s blue perchlorate.15 Emission was seen in every instance however, with eight anion radicals derived from 3 to 5 ring-fused aromatic hydrocarbons, the emission was derived from the hydrocarbon rather than the complex. Preliminary studies with smaller hydrocarbons, biphenyl and naphthalene, did show emission in the region (18 kK) where charge transfer was expected. The question as to what pairs of ion radicals will be emissive under what conditions has only begun to be considered. Much opportunity for further experimentation exists in this area. [Pg.434]

The kinetics of disproportionation is conveniently studied by flash photolysis, A flash of visible light leads to the photoejection of electrons from radical anions or dianions (II). Consider an equilibrated system involving an aromatic hydrocarbon, its radical anion, and its dianion. A flash of light ejects electrons from the dianions and radical anions to convert the dianions into radical anions and the radical anions into the parent hydrocarbon. The ejected electrons are rapidly captured, mainly by the hydrocarbons this process converts the hydrocarbons into radical anions in less than a few milliseconds. The following cases should be considered ... [Pg.36]

Calculations have been carried out on the spectroscopy and excited-state energies and geometries of polyenes,84 the 1,5-cyclo-octadiyne radical cation,85 the visual chromophore, ll-c/s-retinal,8 polyene carbaldehydes,87 aromatic hydrocarbon anions and cations,88 trimethylenemethane,89 thiamine derivatives,80 porphyrins,91 lumiflavin,92 chlorophyll,93 nucleic acids,94 and ferrocene.95... [Pg.8]

Aromatic Radical Anions. Many aromatic hydrocarbons react with alkaU metals in polar aprotic solvents to form stable solutions of the corresponding radical anions as shown in equation 8 (3,20). These solutions can be analyzed by uv-visible spectroscopy and stored for further use. The unpaired electron is added to the lowest unoccupied molecular orbital of the aromatic hydrocarbon and a... [Pg.237]

With substances that give up an electron more readily than aromatic hydrocarbons, such as potassium, nickel carbonyl, cyanide ion, or iodide ion, complete transfer of an electron occurs and the TCNE anion radical is formed (11). Potassium iodide is a particulady usefiil reagent for this purpose, and merely dissolving potassium iodide in an acetonitrile solution of TCNE causes the potassium salt of the anion radical to precipitate as bronze-colored crystals. [Pg.403]

In the presence of a proton source, the radical anion is protonated and further reduction occurs (the Birch reduction Part B, Section 5.5.1). In general, when no proton source is present, it is relatively difficult to add a second electron. Solutions of the radical anions of aromatic hydrocarbons can be maintained for relatively long periods in the absence of oxygen or protons. [Pg.681]

Paradoxically, although they are electron-rich, S-N compounds are good electron acceptors because the lowest unoccupied molecular orbitals (LUMOs) are low-lying relative to those in the analogous carbon systems. For example, the ten r-electron [SsNs] anion undergoes a two-electron electrochemical reduction to form the trianion [SsNs] whereas benzene, the aromatic hydrocarbon analogue of [SsNs], forms the monoanion radical [CeHg] upon reduction. ... [Pg.43]

More recently it has become apparent that proton equilibria and hence pH can be equally important in aprotic and other non-aqueous solvents. For example, the addition of a proton donor, such as phenol or water, to dimethylformamide has a marked effect on the i-E curve for the reduction of a polynuclear aromatic hydrocarbon (Peover, 1967). In the absence of a proton donor the curve shows two one-electron reduction waves. The first electron addition is reversible and leads to the formation of the anion radical while the second wave is irreversible owing to rapid abstraction of protons from the solvent by the dicarbanion. [Pg.181]

Styrene Free radical polymerization similar to the above. Also susceptible to rapid cationic polymerization induced by AlCb at —80°C and to anionic polymerization using alkali metals or their hydrides —CH2—CH— (ieHs T = 100 Amorphous, even when stretched. Hard. Soluble in aromatic hydrocarbons, higher ketones, and esters... [Pg.52]

For some halides, it is advantageous to use finely powdered lithium and a catalytic amount of an aromatic hydrocarbon, usually naphthalene or 4,4 -di- -bu(ylbiphcnyl (DTBB).28 These reaction conditions involve either radical anions or dianions generated by reduction of the aromatic ring (see Section 5.6.1.2), which then convert the halide to a radical anion. Several useful functionalized lithium reagents have been prepared by this method. In the third example below, the reagent is trapped in situ by reaction with benzaldehyde. [Pg.624]

Naphthalene and other aromatic hydrocarbons can be reduced by one electron to produce the anion radical. The reduction can be carried out with sodium in an ether solvent or electrochemically in a polar aprotic solvent. [Pg.23]

For aromatic hydrocarbon radical anions, this approach works pretty well. Figure 2.7 shows a correlation plot of observed hyperfine splitting versus the spin density calculated from Hiickel MO theory. It also correctly predicts the negative sign of aH for protons attached to n systems. [Pg.27]

Scheme 3 In DMF. The Ps are aromatic hydrocarbons and the Qs their anion radicals... Scheme 3 In DMF. The Ps are aromatic hydrocarbons and the Qs their anion radicals...
B. Reactions of Radical Anions of Aromatic Hydrocarbons with... [Pg.65]

In complex organic molecules calculations of the geometry of excited states and hence predictions of chemiluminescent reactions are very difficult however, as is well known, in polycyclic aromatic hydrocarbons there are relatively small differences in the configurations of the ground state and the excited state. Moreover, the chemiluminescence produced by the reaction of aromatic hydrocarbon radical anions and radical cations is due to simple one-electron transfer reactions, especially in cases where both radical ions are derived from the same aromatic hydrocarbon, as in the reaction between 9.10-diphenyl anthracene radical cation and anion. More complex are radical ion chemiluminescence reactions involving radical ions of different parent compounds, such as the couple naphthalene radical anion/Wurster s blue (see Section VIII. B.). [Pg.69]

The simplest systems where electron-transfer chemiluminescence occurs on interaction of radical ions are radical-anion and radical-cation recombination reactions in which the radical ions are produced from the same aromatic hydrocarbon (see D, p. 128) by electrolysis this type of chemiluminescence is also called electro-chemiluminescence. The systems consisting of e.g. a radical anion of an aromatic hydrocarbon and some other electron acceptor such as Wurster s red are more complicated. Recent investigations have concentrated mainly on the energetic requirements for light production and on the primary excited species. [Pg.119]

The electrogenerated radical anions of aromatic hydrocarbons, e.g. DPA, rubrene, fluorene, can also act as reductants towards electro-chemically obtained radical cations which are derivatives of other aromatic compounds such as N,N-dimethyl-/>-phenylenediamine (Wurster s red) 150> (see Section VIII. B.). When a mixture of DPA and a halide such as 99 (DPACI2) or 100 is electrolysed, a bright chemiluminescence is observed the quantum yields are about two orders of magnitude higher than that of the DPA radical anion-radical cation reaction 153>. [Pg.122]

Chemiluminescence also occurs during electrolysis of mixtures of DPACI2 99 and rubrene or perylene In the case of rubrene the chemiluminescence matches the fluorescence of the latter at the reduction potential of rubrene radical anion formation ( — 1.4 V) at —1.9 V, the reduction potential of DPA radical anion, a mixed emission is observed consisting of rubrene and DPA fluorescence. Similar results were obtained with the dibromide 100 and DPA and/or rubrene. An energy-transfer mechanism from excited DPA to rubrene could not be detected under the reaction conditions (see also 154>). There seems to be no explanation yet as to why, in mixtures of halides like DPACI2 and aromatic hydrocarbons, electrogenerated chemiluminescence always stems from that hydrocarbon which is most easily reduced. A great number of aryl and alkyl halides is reported to exhibit this type of rather efficient chemiluminescence 155>. [Pg.122]

A. Weller and K. Zachariasse 157-160) thoroughly investigated this radical-ion reaction, starting from the observation that the fluorescence of aromatic hydrocarbons is quenched very efficiently by electron donors such as N,N diethylaniline which results in a new, red-shifted emission in nonpolar solvents This emission was ascribed to an excited charge-transfer complex 1(ArDD(H )), designated heteroexcimer, with a dipole moment of 10D. In polar solvents, however, quenching of aromatic hydrocarbon fluorescence by diethylaniline is not accompanied by hetero-excimer emission in this case the free radical anions Ar<7> and cations D were formed. [Pg.123]

A general theory of the aromatic hydrocarbon radical cation and anion annihilation reactions has been forwarded by G. J. Hoytink 210> which in particular deals with a resonance or a non-resonance electron transfer mechanism leading to excited singlet or triplet states. The radical ion chemiluminescence reactions of naphthalene, anthracene, and tetracene are used as examples. [Pg.135]

However, ECL was not then studied in detail until 1963 [4, 5], At this time ECL from solutions of aromatic hydrocarbons was first recorded, and mechanisms involving electron transfer between electrically generated radical anions and cations were proposed. Between the mid-1960s and late 1980s there was considerable interest in the phenomenon of ECL. More than 60 publications in the literature focused almost solely on the mechanism of ECL reactions, identi-... [Pg.212]

The redox properties of cyclic polysilanes are interesting because they resemble those of aromatic hydrocarbons. For instance, cyclic polysilanes can be reduced to anion radicals or oxidized to cation radicals. ESR spectra for both the cation and anion radicals indicate that the unpaired electron is fully delocalized over the ring [17,19,20]. The aromatic properties of the cyclic polysilanes are ascribed to a high energy delocalized HOMO and a relatively low energy LUMO. Because the HOMO and LUMO levels lie at similar level to those of benzene, cyclic polysilanes can serve either as electron donors or electron acceptors. [Pg.60]

The reduction of organic halides in the presence of aromatic hydrocarbons, the subject of detailed kinetic studies, provide rate constants for the homogeneous ET [147-150] and the follow-up reaction [151]. The theoretical basis for this kind of experiment ( homogeneous redox catalysis ) was laid by Saveant s group in a series of papers during the years 1978-80 [152-157]. Homogeneous ET also plays an important role in the protonation of anion radicals [158]. [Pg.110]

The addition of alkyl halides to aromatic anion radicals, generated by alkalimetal reduction in ethereal solvents, was already known in the 1950s [201] and was reviewed by Garst in 1971 [202]. The first electrochemical analogue was observed by Lund etal. [203]. These authors cathodically reduced hydrocarbons such as naphthalene, anthracene, stilbene [145, 146], and pery-lene [147-150] in the presence of alkyl halides and isolated hydrogenated and alkylated products. Similar reactions are observed when the halides are replaced by ammonium or sulfonium [204]. [Pg.113]

Lund and coworkers [131] pioneered the use of aromatic anion radicals as mediators in a study of the catalytic reduction of bromobenzene by the electrogenerated anion radical of chrysene. Other early investigations involved the catalytic reduction of 1-bromo- and 1-chlorobutane by the anion radicals of trans-stilhene and anthracene [132], of 1-chlorohexane and 6-chloro-l-hexene by the naphthalene anion radical [133], and of 1-chlorooctane by the phenanthrene anion radical [134]. Simonet and coworkers [135] pointed out that a catalytically formed alkyl radical can react with an aromatic anion radical to form an alkylated aromatic hydrocarbon. Additional, comparatively recent work has centered on electron transfer between aromatic anion radicals and l,2-dichloro-l,2-diphenylethane [136], on reductive coupling of tert-butyl bromide with azobenzene, quinoxaline, and anthracene [137], and on the reactions of aromatic anion radicals with substituted benzyl chlorides [138], with... [Pg.229]

Cathodic reduction of aromatic hydrocarbons gives 7T-radical anions, which are possible EGBs. However, the PBs normally have low solubilities in polar aprotic solvents, relatively low reduction potentials. [Pg.472]


See other pages where Aromatic hydrocarbons, anion radicals is mentioned: [Pg.364]    [Pg.389]    [Pg.237]    [Pg.270]    [Pg.202]    [Pg.275]    [Pg.170]    [Pg.120]    [Pg.123]    [Pg.16]    [Pg.242]    [Pg.58]    [Pg.72]    [Pg.193]    [Pg.21]    [Pg.84]    [Pg.97]    [Pg.229]   
See also in sourсe #XX -- [ Pg.144 ]




SEARCH



Anions, aromatic

Aromatic radical anions

Aromaticity anions

Aryl in Radical Anions of Aromatic Hydrocarbons and Related Reactions

Hydrocarbon anions

Hydrocarbons radical anions

Radical anions aromatics

Radical anions of aromatic hydrocarbons

© 2024 chempedia.info