Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Separation alkali metals

Other selected examples include tris(tetramethylethylene diamine-sodium)-9,9-dianthryl 143,154 alkali metal salts of 9,10-bis(diisopropylsilyl)anthracene 144,155 as well as the closely related naked 9,10-bis(trimethylsilyl)anthra-cene radical anion 145.156 This chemistry is further extended to the solvent-shared and solvent-separated alkali metal salts of perylene radical anions and dianions 146, 147,156 while other examples focus on alkali metal salts of 1,2-diphenylbenzene and tetraphenylethylene derivatives, where reduction with potassium in diglyme afforded contact molecules with extensive 7r-bonding, [l,2-Ph2C6H4K(diglyme)] 148.157 Extensive 7r-coordination is also observed in (1,1,4,4 tetraphenylbutadiene-2,3-diyl)tetracesiumbis(diglyme)bis(methoxyethanolate) 149.158... [Pg.17]

In general terms, both the anionic [Mg(HMDS)3] and cationic [Na (donor) 2] moieties are typical structural motifs for solvent-separated alkali metal containing bimetallic magnesium complexes. [Pg.24]

When sulphur dioxide reacts with an aqueous suspension of manganese dioxide, manganese dithionate is formed. When this is treated with barium hydroxide, the barium dithionate is left in solution when manganese(Il) hydroxide separates. Alkali metal or ammonium dithionates are prepared from a solution of the barium dithionate in an ion-exchange column. [Pg.108]

Much of tills chapter concerns ET reactions in solution. However, gas phase ET processes are well known too. See figure C3.2.1. The Tiarjioon mechanism by which halogens oxidize alkali metals is fundamentally an electron transfer reaction [2]. One might guess, from tliis simple reaction, some of tlie stmctural parameters tliat control ET rates relative electron affinities of reactants, reactant separation distance, bond lengtli changes upon oxidation/reduction, vibrational frequencies, etc. [Pg.2972]

The proportion of hydrochloric acid in the mobile phase was not to exceed 20%, so that complex formation did not occur and zone structure was not adversely affected. An excess of accompanying alkaline earth metal ions did not interfere with the separation but alkali metal cations did. The hthium cation fluoresced blue and lay at the same height as the magnesium cation, ammonium ions interfered with the calcium zone. [Pg.312]

The alkali metals form a homogeneous group of extremely reactive elements which illustrate well the similarities and trends to be expected from the periodic classification, as discussed in Chapter 2. Their physical and chemical properties are readily interpreted in terms of their simple electronic configuration, ns, and for this reason they have been extensively studied by the full range of experimental and theoretical techniques. Compounds of sodium and potassium have been known from ancient times and both elements are essential for animal life. They are also major items of trade, commerce and chemical industry. Lithium was first recognized as a separate element at the beginning of the nineteenth eentury but did not assume major industrial importance until about 40 y ago. Rubidium and caesium are of considerable academic interest but so far have few industrial applications. Francium, the elusive element 87, has only fleeting existence in nature due to its very short radioactive half-life, and this delayed its discovery until 1939. [Pg.68]

I) Refluxing said benzyl ester with an aqueous alcoholic alkali metal hydroxide solution to saponify the benzyl ester group, neutralizing the saponification mixture by the addition of hydrochloric acid, extracting the neutralized mixture with chloroform, and separating the resulting (S,N-ditrityl-L-cysteinyl)-L-proline. [Pg.1156]

The elements of primary importance in this context are oxygen, nitrogen, carbon and hydrogen. In the technology of the liquid alkali metals they play a predominant rdle. Their origin is associated with leakages in the circuit, impurities remaining after construction or residual impurities in the liquid metal. It is convenient to discuss these four elements separately. [Pg.431]

Table 6. Maximum molar ratios of transported alkali metal ions to crown ether carrier for several separation techniques... Table 6. Maximum molar ratios of transported alkali metal ions to crown ether carrier for several separation techniques...
The person whose name is most closely associated with the periodic table is Dmitri Mendeleev (1836-1907), a Russian chemist. In writing a textbook of general chemistry, Mendeleev devoted separate chapters to families of elements with similar properties, including the alkali metals, the alkaline earth metals, and the halogens. Reflecting on the properties of these and other elements, he proposed in 1869 a primitive version of today s periodic table. Mendeleev shrewdly left empty spaces in his table for new elements yet to be discovered. Indeed, he predicted detailed properties for three such elements (scandium, gallium, and germanium). By 1886 all of these elements had been discovered and found to have properties very similar to those he had predicted. [Pg.33]

Interaction between niobium oxide and fluorides, chlorides or carbonates of alkali metals in an ammonium hydrofluoride melt, yielded monooxyfluoroniobates with different compositions, MxNbOF3+x, where they were subsequently investigated [123-127]. According to DTA patterns of the Nb205 - 6NFL HF2 - 2MF system, (Fig. 18) a rich variety of endothermic effects result from the formation of ammonium monooxyfluoroniobate, its thermal decomposition and its interaction with alkali metal fluorides. The number of effects decreases and separation of ammonium ceases at lower temperatures and when going from lithium to cesium in the sequence of alkali metal fluorides. [Pg.49]

The anions MeF6 and X approach each other closely to form the heptacoordinated complex MeF6X(n+1)", or separate from one another, according to the polarization potential of the outer-sphere cation (alkali metal cation -M+). This process is unique in that the mode frequencies of the complexes remain practically unchanged despite varying conditions. This particular stability of the complexes is due to the high charge density of Ta5+ and Nbs+. [Pg.192]

Although the elements tantalum and niobium were discovered more than 200 years ago in the form of oxides, the true beginning of the chemistry of tantalum and niobium was the discovery and investigation of complex fluorotantalates and fluoroniobates of alkali metals. Application of complex fluoride compounds enabled the separation of tantalum and niobium and in fact initiated the development of the industrial production of the metals and their compounds. [Pg.398]

The organization of the Handbook of Battery Materials is simple, dividing between aqueous electrolyte batteries and alkali metal batteries and further in anodes, cathodes, electrolytes and separators. There are also three more general chapters about thermodynamics and mechanistics of electrode reactions, practical batteries and the global competition of primary and secondary batteries. [Pg.624]

Separation of Some Alkali Metals Using an Ion Exchange Resin in Conjunction with a Cation Micro-Membrane Ion... [Pg.87]

Limitations common to both salt elimination methods 1 and 2 are (a) the required product may be difficult to separate from the alkali metal halide, (b) reactions are best carried out in the solvent (usually an ether) in which the initial alkali metal derivative is prepared, (c) difficulties may arise through metal-halogen exchange (207), and (d) the range of starting anions is limited [e.g., X3Si compounds are only readily formed when X = H or Ar,... [Pg.264]


See other pages where Separation alkali metals is mentioned: [Pg.433]    [Pg.103]    [Pg.245]    [Pg.433]    [Pg.103]    [Pg.245]    [Pg.75]    [Pg.385]    [Pg.1889]    [Pg.13]    [Pg.536]    [Pg.115]    [Pg.79]    [Pg.80]    [Pg.103]    [Pg.327]    [Pg.1155]    [Pg.1156]    [Pg.1156]    [Pg.16]    [Pg.78]    [Pg.35]    [Pg.205]    [Pg.319]    [Pg.511]    [Pg.605]    [Pg.163]    [Pg.1007]    [Pg.759]    [Pg.87]    [Pg.6]    [Pg.59]    [Pg.66]    [Pg.81]    [Pg.350]    [Pg.149]   
See also in sourсe #XX -- [ Pg.138 , Pg.141 , Pg.142 ]




SEARCH



Alkali metal ions selective separation

Alkali metal ions separation

Metal ions, alkali, separation with

Separation of Alkali Metal Ions

Separations alkali metal cations

© 2024 chempedia.info